Presented at
Back Bay LISA

January 14, 2015
Cambridge, MA

http:/bblisa.org

Radical |[deas from
The Practice of Cloud
System Administration

DMINISTRATIC Tom Limoncelli, SRE
DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

StackExchange.com

™\
'“ v i the-cloud-book.com

Ny @YesThatTom

Who is Tom Limoncelli?

Sysadmin since 1988 VOLUME 2

Worked at Google, Bell Labs plus
many smaller companies.
ADMINISTRATION
SRE at Stack Exchange, Inc DESIGNING AND OPERATING
serverfault.com / stackoverflow.com LARGE DISTRIBUTED SYSTEMS

Blog: EverythingSysadmin.com

Twitter: @YesThatTom

THOMAS A, LIMONCELL! = STRATA R. CHALUP * CHRISTINA). HOGAN

Thomas A. Limoncelli is internationally
recognized author, speaker, and system administrator
with 20+ years of experience at companies like
Google, Bell Labs and StackExchange.com

Strata R. Chalup has 25+ years experience
in Silicon Valley focusing on IT strategy, best-
practices, and scalable infrastructures at firms
including Apple, Sun, Cisco, McAfee, and Palm.

Christina J. Hogan has 20+ years experience in
system administration and network engineering, from Silicon
Valley, to Italy, and Switzerland. She has a Masters in CS, a
PhD in Aeronautical Engineering and has been part of a
Formula 1 racing team.

VOLUME 2 « 2012 April: Started writing
HE PRACIICE OF
OUD JSYSTI » 2014 April: Chapters Done

I INTICTD AT
- -’ “. 'v‘ . ! . Jt l 1 L -(‘ : . . E’l\\ ‘,“",‘,l‘ .

DESIGNING AND OPERATING « 2014 May/June: Copyediting

LARGE DISTRIBUTED SYSTEMS

« 2014 July/Aug: Layout
e 2014-Sept-14: SHIPPED!

PartI Design: Building It

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

7

Designing in a Distributed World 9
Designing for Operations 31
Selecting a Service Platform 51
Application Architectures 69
Design Patterns for Scaling 95
Design Patterns for Resiliency 119
Part II Operations: Running It 145
Operations in a Distributed World 147
DevOps Culture 171
Service Delivery: The Build Phase 195
Service Delivery: The Deployment Phase 211
Upgrading Live Services 225
Automation 243
Design Documents 275
Oncall 285
Disaster Preparedness 307
Monitoring Fundamentals A31

Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20

Epilogue

Monitoring Architecture and Prac
Capacity Planning
Creating KPIs
Operational Excellence

Appendix A Assessments

Appendix B The Origins and Future of Distributed Computing

and Clouds

Appendix C Scaling Terminology and Concepts

Appendix D Templates and Examples

Appendix E Recommended Reading

The Cloud

1he
Cloud

The
Cloooooouud

The

The
Cloud!!1l]

We
<heart>
The Cloud

The cloud solves
all problems.

Oo0o0o0o0o0o0o0o0oo 0

oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud ¢C
oud c

oud c
oud c
oud c
oud c
oud c
oud cC
oud ¢C
oud c
oud c
oud ¢C
oud cC

oud ¢
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c

oud c
oud c
oud c
oud c
oud ¢C
oud C
oud c
oud c
oud c
oud ¢C
oud c

oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c

oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c
oud c

oud
oud
oud
oud
oud
oud
oud
oud
oud
oud
oud.

Distributed Computing

1333539 dRIZONILNGWOD 40 WNISNWEIYNOILENIASILEN0D

‘o

P

'

) Q\’f""‘.« v

- e
] &.m

.n«,awmym
TSIy

¢eoe Hogoen A
cﬂhﬂ*ﬂftaaa

TN A -
R b LA d T LR

feoe YTy YT IFE T LT
’110* R R CARABpRrrans
T T ‘YrY ¥ SA LT IPRE I TTY

eoe 0t opes w.a?u u".vv,moovmwﬂﬂ
P _Frprploeenp SR R LA AR CEE B
ceel0ceepnplovrorel¥onson ..ssss“..m...om.m
roel= sopouk onnenignnan| |oovyni vagy)

Client Server Network

Printers

QT QA

&

Blakberry

.
Backup Unit

L

SCCUTOORXTRTee A:.ﬂ../ g
//u'////// 'AA..AA/A’A..,ﬂ
//// B S B e AA/,.,, .p.,.,...

“
=
-
-
-
-
-
_—
-
= —
: =
—
- —
u o
m '
—
~
~
~
-~
~
~
N
~
N
N

Distributed Computing

* Divide work among many machines
» Coordinated central or decentralized
* Examples:

* Genomics: 100s machines
working on a dataset

* Web Service: 10 machines each
taking 1/10th of the web traffic for
StackExchange.com

» Storage: xx,000 machines
holding all of Gmail's messages

Distributed computing can
do more “work” than the
largest single computer.

More storage.

More computing power.
More memory.

More throughput.

Mo computers, Mo’ problems

Thousands of Users In response: Radical ideas on
* Bigger risks * Reducing risk / Improve safety

* Failures more visible * Reliability becomes a

. Automation mandatory ~ competitive differentiator
e Cost containment * New automation paradigms

becomes critical e Cost and economics

Make peace with failure

Parts are imperfect
Networks are imperfect
Systems are imperfect
Code is imperfect
People are imperfect

. earn how to

AL

BEl TER

Buy the best, most reliable computer
in the world. It is still going to fail.

If it doesn't, you'll still need to take it
down for maintenance.

3 ways to fail better

1. Use cheaper, less reliable, hardware.
2. If a process/procedure is risky, do it a lot.

3. Don't punish people for outages.

Fail Better Part 1 of 3:

Use cheaper, less
rellable, hardware.

* Loss-damage waiver

Y Liabili -J;
=
""'.f'"‘,"' e Persofiahaccidem
INSWAaNge

* Personal effects coverage

High-End Server

RAID
Dual PS
UPS

Gold Maintenance

Tip: Prefer Reliability through software,
not hardware

+ Resiliency through software:
* Costs to develop. Cheap to deploy.

* O(1)

* Resiliency through hardware:

* Costs every time you buy a new machine.

* O(n)

Best hardware.

Write code so
that the system is
distributed.

ucuhle-spending

Load Balancer Load Balancer

Efficient Server Efficient Server Efficient Server Efficient Server Efficient Server

Load Balancer

Load Balancer

These techniques
work for large
grids of
machines...

...and every-day
systems too.

Big resiliency is cheaper
—

50% 10%
overhead overhead

Efficiency comes from
starting with an SLA and
buying enough resiliency
to meet it (not exceed it).

Load balancing &
redundancy Is just one
way to achieve resiliency.

The cheapest
way to buy
terabytes of RAM.

Fail Better Part 1 of 3:

Use cheaper, less
rellable, hardware.

Fail Better Part 2 of 3:

If a process/procedure
S risky, do it a lot.

RISKY behavior
VS.
RISky procedures

Risky Behaviors are
iInherently risky

Smoking

Shooting yourself in the foot
Blindfolded chainsaw juggling

Risky behawor S rlsky

Risky Processes can be

improved through practice

e Software Upgrades

e Database Failovers

e Network Tru

Hardware B

nk Fallovers
ot Swaps

StackExchange.com
Failover from NY or Oregon

« StackExchange.com has
a "“DR” site in Oregon.

.

<& N

2014 /

S L Server » StackExchange.com
runs on SQL Server with
" “AlwaysOn” Availability

S Groups plus...

Redis, HAproxy, ISC
= redis BIND, CloudFlare, IS,
and many home-
grown applications

Process was risky

* Took 10+ hours
* Required "hands on” by 3 teams.
* Found 30+ “improvements needed”

* Certain people were S.P.O.F.

Drill Results

Bugs
Filed 30
20
Hours 19
10
5

Why?

 Each drill “surfaces™ areas of improvement.

 Each member of the team gains
experience and builds confidence.

e “Smaller Batches” are better

Software Upgrades

* Traditional

Months of planning
Incompatibility issues
Very expensive

Very visible mistakes

By the time we're done,
time to start over again.

* Distributed Computing

High frequency (many
times a day or week)

Fully automated
Easy to fix failures

Cheap... encourages
experiments

‘Big Bang' releases
are inherently risky:.

Small batches are better

Fewer changes each batch:

o |f there are bugs, easier to identify source
Reduced lead time:

* |t IS easler to debug code written recently.
Environment has changed less:

* Fewer “external changes” to break on
Happier, more motivated, employees:

* Instant gratification for all involved

Risk is inversely proportional to
how recently a process has

been used

most least
risky risky
less more
recent recent

Backups Software Continuous LB web

that have

ve Upgrades Software servers

never every 3 Deplovment that fail all

been years IOy the time

restored

Netflix “Chaos Monkey”

- Randomly reboots machines.
- Keeps Netflix “on its toes”.
- Part of the Simian Army:

* Chaos Monkey (hosts)

* Chaos Kong (data centers)

* Latency Monkey (adds random
performance delays)

Fail Better Part 2 of 3:

If a process/procedure
S risky, do it a lot.

Fail Better Part 3 of 3:

Don't punish
people for outages.

There will always

Make peace with failure

Parts are imperfect
Networks are imperfect
Systems are imperfect

People are imperfect

equivalent
to expecting them to
never happen...
which is

Out-dated attitudes about outages

* Expect perfection: 100% uptime
* Punish exceptions:

 fire someone to “prove we're serious”
* Results:

* People hide problems

* People stop communicating

* Discourages transparency

« Small problems get ignored, turn into big
problems

New thinking on outages

« Set uptime goals: 99.9% +/- 0.05

* Anticipate outages:
« Strategic resiliency techniques, oncall system
 Drills to keep in practice, improve process

* Results:
* Encourages transparency, communication

« Small problems addressed, fewer big
problems

e Over-all uptime improved

AP
There is noroof cause. | There are only
Contributing
Factors

John Allspaw
http://www.kitchensoap.com/2012/02/10/each-necessary-but-only-jointly-sufficient/

After the outage, publis

postmortem document

1 d

* People involved write a “blameless postmortem”
* |dentifies what happened, how, what can be done

to prevent similar problems in the fut

ure.

* Published widely internally and externally.
* Instead of blame, people take responsibility:

* Responsibility for implementing lon

g-term fixes.

* Responsibility for educating other teams how to

learn from this.

Outage Post-Mortem - 2014-08-25/0utage

Summary:

On Aug 25, 2014 there was an outage of all web properties (Core and Careers) from 3:27pm
to 3:32pm NYC-time (approx 7 minutes). The cause was an incorrect change to security
settings. The solution was to revert the change via Puppet. Measures being implemented to
prevent this problem in the future are listed below.

Outage Type Sites Down

Outage Timeframe 2014-08-25 19:24, about 7m of downtime

Summary of causes Bad change to firewall rules.

Recommendations Need to refactor firewall rules to be more easy to
understand and update; Need to develop better testing
methods for firewall rulesets.

Background Information

The intended change: SRE was attempting to update the firewall rules to to permit internal
openid calls to work directly rather than going out to the intemet and back in.

Outage Schedule of Events

1 da2d38d6a Change pushed to Git
8-25 19.26 Puppet runs on ny-Ib05 (pushed bad change / outage BEGINS)
2014 08-25 19:27 Pagerduty and Pingdom page oncall (Tom)

2014 08- 25 19:27 @David asked "Who broke everything but chat?" on SRE-team
14-08-25 19:27 da2d38d6a1 Revert pushed to Git

2014-08-25 19:30 Puppet runs on ny-lb06 (pushed revert)

2014-08-25 19:32 Puppet runs on ny-Ib05 (pushes revert) (outage RESOLVED)

Things that went Right

e Use of version control with Puppet means we are able to revert bad changes quickly

e Everyone worked together to find and fix the problem

Processes Needing Improvement

e Firewall rules should be refactored to be easier to understand and update

e Firewall rules need a better testing method

rdiate to do
Improve comments in iptables files (there are wrong and misleading comments)

(Done: b55e654491)

Long term to do
e Move LB firewalls to the new structure being developed
e Establish better testing methodology for firewall changes

| dunno about anybody else, but | really like
getting these post-mortem reports. Not only
is it nice to know what happened, but it's
also great to see how you guys handled it
in the moment and how you plan to
prevent these events going forward. Really

neato. Thanks for the great work :)

—-Anna

Fail Better Part 3 of 3:

Don't punish
people for outages.

Take-homes

e “cloud computing” = “distributed computing”
1. Use cheaper, less reliable, hardware

* Create reliability through software (when

possible)

* Pay only for the reliability you need
2. If a process/procedure is risky, do it a lot

* Practice makes perfect

« “Small Batches” improves quality and morale
3. Don’t punish people for outages

* Focus on accountability and take responsibility

We run services, not
servers.

- A “server’” is a servereven ifitis
powered off.

- A “service” is powered up,
running, and useful.

We run services,
NOt servers.

- Healthy services run themselves.

- We are hired to be awesome in

the face of failure.

Be Awesome

If you liked this talk..

..there’s more like it in AN
http ://the-cloud-book.com CLOUD SYSTEM

ADMINISTRATION

DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

Save 35%
www.informit.com/TPOSA
Discount code TPOSA35

Radical |[deas from
The Practice of Cloud

System Administration

MINISTRATIC Tom Limoncelli, SRE
DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

StackExchange.com

™\
'“ v i the-cloud-book.com

N

@YesThatTom

Q&A

