
Trying to Outpace Log
Collection with ELK

Elasticsearch, Logstash, Kibana

Time: 0:10

Hi everyone! I’m Neil Schelly, a sysadmin up at Dyn in New Hampshire. I’ve been
focused for the last year on a project to get centralized logging in place for our
network. Here I am to share a bit of that experience with all of you.

Disclaimer: Judgement Free Zone

https://www.flickr.com/photos/coconinonationalforest/5376143040

Time: 0:15

Disclaimer: This is a judgement free zone, and we’ll get to why in a bit. I also have a
penchant to browse Flickr for creative commons photos for presentation slides. I’m
sorry in advance.

I am not sure what this guy’s job is once he finds a loose chain, and I’m pretty sure he
won’t be able to run fast enough if he does.

● Yay - we did something awesome!
● Embarrassed that it wasn’t already done.
● Hide in shame…
● …
● …
● Recognize that others probably haven’t

done it either.
● … Give a presentation about it!

Please don’t judge me...

Time: 0:15

● Yay - we did something awesome!
● And then… We’re slightly embarrassed that it wasn’t already done.
● Kinda want to hide in shame.
● Hmm…
● Eventually recognize that others probably also haven’t done it yet.
● Presentation!

I feel like there should be a bullet point for profit in here somewhere, but I haven’t
figured out how that works yet.

The Problem

https://www.flickr.com/photos/iangbl/338035861

Time: 0:05

Starting with a problem statement… We have logs. Lots of logs. Don’t care about all
of them, but definitely care about some of them.

● SSH to the box
● Proudly exercise grep/awk/sed skills
● See what happened

Logs are Useful

Time: 0:10
Logs are useful

We know this. We’ve all administered something like this.

SSH in, do some grep-fu, and we know what happened!

● Deploy more servers
● Now logs are hard
● Rsync to the rescue!
● Proudly exercise grep/awk/sed skills
● See what happened

Servers are Useful

Time: 0:10
Multiple servers are also useful.

But the same approach can work well with some rsync thrown in.

The magic of rsync only buys so much time before...

● Deploy more servers, clouds, the Internet
of Things, ephemeral entities, IaaS, etc

● Now logs are hard again.
● SSH? ...#(*@#!
● rsync? ...#(*@#!
● grep? ...#(*@#!
● Wonder what happened

Lots of Servers are Useful

Time: 0:15

Then we moved on to more servers, clouds, the Internet of Things, ephemeral
entities, IaaS, etc…

Complex systems are more complex. Logs got hard again. At this point, we just end
up wondering what happened.

Justification

“If you can’t convince them,
confuse them.”

- Harry S. Truman

Time: 0:05

So we know we want to create a centralized place to monitor the whole system. How
do you justify it?

In case President Truman’s advice doesn’t work for you, I’ll show what worked for us.

● Better visualization of trends
● Easier searching for errors
● Historical perspective of suspicious events
● Pretty graphs and charts

Technical Case Justification

Time: 0:15

The technical case is easiest. Never underestimate the value of pretty graphs and
charts. We had all these justifications long before this project got approval to happen.

It doesn’t make money. It doesn’t scale the product to support more people, which
would make money. It helps the people support the product more easily as more
customers use the system. That’s pretty indirect to the folks who sign the checks.

● Security Attestations and Compliances
○ Shorten the sales cycles for customers who ask

about our security policies
○ Open new markets

Business Case Justification

Time: 0:20

Here’s how we convinced folks to sign checks. This is still a judgement-free zone in
case you forgot.

● Security attestations and compliances generally require you to prove you are
paying attention to what’s going on with your systems. Auditors are really
impressed by centralized logging systems.

● Shorten sales cycles when customers ask questions about security policies
● Open new markets to customers who demand certain certifications

These justifications may work for you. YMMV.

The State of the Logs

https://www.flickr.com/photos/alanenglish/3509549894

The Prototype

https://www.flickr.com/photos/laffy4k/404321726

Time: 0:06

So we’ve got some ideas and we’ve got some justification to explore them and some
mandates to start paying better attention to logs. It’s time to start playing.

● Approximate events per day
● Identify inter-site bandwidth requirements
● Use cases for visualizations/searches

○ Sudo commands, per user, per host
○ disk drive read/write failures
○ VPN login attempts (failed and successful)

● Familiarization with options in market

Planning Stages

Time: 0:25

For the purposes of planning scale, you want to know how many events you want to
handle, how much space that will take, etc.

● Look for places where logs won’t be evenly distributed in your network
● Find out whether some log sources will have larger messages than others in

any significant way
● This can help in predicting constraints that should be explored.

Come up with use cases. There should be some information that you already know
you want to look for once the logs are all searchable in one place. If not, you
probably don’t yet need this project on your plate.

Finally, look at the options in the market people are using to solve these problems.
Come up with the options.

● Splunk
● ELK - Elasticsearch, Logstash, Kibana
● Graylog2

Investigating Options

Time: 1:00

Once you get to look at the market, you get into 3 primary options out there.

Splunk is the 800lb gorilla in the market. Structurally, Splunk is a collection of data
nodes and agents running on machines that tail log files or watch for traffic on
listening ports or something along those lines. It’s all configured in the web interface.
The data can be distributed amongst all the data nodes.

ELK is the Elasticsearch, Logstash, Kibana combination that the Elasticsearch
company offers as their solution. Logstash is the ingestion and parsing piece of the
puzzle with listening ports or pulling in data from other sources or tailing log files, etc.
It will process the events, parse out any fields for specific indexing or searching
statistics, filter and modify events as desired, and deliver parsed events downstream.
Elasticsearch is a cluster that fulfills the search engine/indexing piece. It ingests
JSON documents, allows keyword searching, field indexing, statistics aggregation,
etc. Kibana is a web application entirely in HTML and CSS and Javascript that
requests information from the Elasticsearch HTTP REST API and displays it in
interesting ways to the end user.

Graylog2 is a master/slave cluster that acts as an application server frontend for
Elasticsearch. That daemon is responsible for configuring listening ports for incoming
data, ingesting data on those ports into an Elasticsearch cluster, and providing access
to the data via a web interface within that application server.

● Very distributed, disconnected network
● Syslog log collector/relay in each location
● Anycast target address
● Systems can be under-resourced to see

where/how it breaks
● Relays fan out messages to all 3 systems

Prototype Design

Time: 0:20

For our prototype design, we came up with something like this.

Our network is very distributed and disconnected, so we setup a collector to relay logs
in each site.

It’s available at an anycasted address so every machine in the network can send to
the same name/IP.

Systems can be under-resourced so you can find your pain points in the prototype
stages.

Eventually, we wanted messages to fan out to all 3 systems to get familiar with them
all

● Run Logstash, listening for syslog traffic
● Run RabbitMQ for queueing
● Use RabbitMQ shovels to route logs
● Use Logstash to ingest from RabbitMQ

and fork logs to all three concurrent
systems

Anycast Log Relays/Collectors

Time: 1:00

So on our prototype relays, we have Logstash running and listening on port 514
sockets for syslog traffic. It parses those logs into JSON and send them to a local
instance of RabbitMQ. Once the messages are in a queue, we’re using RabbitMQ’s
shovel plugin to move those logs to queues on other relay machines.

The shovel is a dedicated AMQP client thread that will run inside the RabbitMQ
process’s Erlang virtual machine. That client is designed to do simple things like read
from one queue and publish to another. In our infrastructure, we built the big central
parts of these systems in AWS, and most of our edge sites cannot actually route to it.
They can all route to our core datacenters, and those core datacenters can get to our
AWS instances.

Our edge sites’ RabbitMQ daemons have shovels that pull messages off the queue
and deliver them to the RabbitMQ systems in our core sites. Those RabbitMQ
systems have shovels that pull messages off the queue and deliver them to the
centralized logging systems in AWS.

For the purposes of the prototype, Logstash re-ingests the messages from RabbitMQ
and forks out a copy of each to Splunk, Graylog2, and Elasticsearch for ELK. It’s very
easy to setup multiple outputs for Logstash.

● Yes.

Logstash with Splunk/Graylog2?

elasticsearch

gelft/graylog2

tcp/splunk

LogstashRabbitMQRabbitMQRabbitMQ

AWS: Centralized Systems
LogstashLogstash

Servers Servers

AMQP Traffic

RabbitMQ Shovel

Syslog/514 Traffic
Edge Sites Core Sites

Time: 0:50

So that prototype design uses Logstash for everything, and that’s misleading a bit.

On the relays, Logstash is listening for syslog traffic and outputting to RabbitMQ. The
messages travel through AMQP to get to the centralized logging servers in AWS.
From there, another Logstash process is pulling messages from RabbitMQ and
outputting those messages to all 3 destinations. It’s using the Elasticsearch API to
send to the Elasticsearch cluster in a Kibana-friendly index, using GELF to talk to the
Graylog2 server, and using raw TCP to send JSON-formatted events to Splunk.

Quick note if you’re trying to accomplish a similar test setup with Splunk. You really
want Logstash to separate events with newlines using the json_lines codec. If you
don’t set that, then it’s rather complicated to get Splunk to differentiate one event from
the next.

This is all valid because we were comparing the different means of searching the
logs, costs of running the systems, effort to scale the systems, whether or not we
could find the information our use cases defined, etc. If we went with something other
than ELK, we could have re-architected without Logstash, but honestly, I might have
kept it for its flexibility at this stage. There are definitely reasons you might want to
use Logstash with all three systems. It’s a useful tool for stream-processing of
events. Logstash is really just a collection of inputs, modifiers/filters, and outputs,
which you can read about at their docs site.

Things I Learned

https://www.flickr.com/photos/pfly/1537122018

Time: 0:05

So then, I learned stuff!

● Learn how AMQP is supposed to work
● The RabbitMQ Shovel plugin is magic
● Redis is the performance choice for

queueing messages from Logstash
○ Mostly based on outdated information

RabbitMQ

Time: 0:45

RabbitMQ is the reference implementation of the AMQP protocol. You can get
RabbitMQ working quickly out of the box. It’s really easy, even if you’ve no idea what
AMQP is or how it works. Eventually, you’ll want to just read their documentation
about what AMQP does for message passing, what exchanges and routing keys and
queues are, and how the different types of exchanges and queues work. They have
really great documentation on that. Some of their documentation about interacting
with their REST API is a bit tough to follow, but their system diagram documentation
is really helpful.

Since I’m using RabbitMQ to move messages around the network pretty quickly
without any processing at each step, the RabbitMQ Shovel plugin is awesome.
RabbitMQ is an Erlang daemon, so you can use this plugin to create a dedicated
thread in the Erlang VM that is just a very simple AMQP client that reads from one
queue and publishes to another exchange. It can read/write to local or remote
RabbitMQ daemons.

There’s a lot of information out there that points to Redis being the more performant
queueing option for Logstash, but it really didn’t fulfill my needs of controlling the
routing of messages at layer 7 or using SSL. I didn’t really investigate it much. More
recent news is that it does support SSL, but the RabbitMQ interfaces in jRuby (used
by Logstash) are a lot faster than they once were too. RabbitMQ is not a constraint
on my systems anyway.

● Every bit as flexible as it looks
● Upgrades usually painless
● UDP socket buffers are easy to flood

Logstash

Time: 0:30

Logstash is every bit as flexible as it looks, and it really is improving at a remarkable
pace. It’s been stable and reliable for many versions, despite undergoing significant
changes. You don’t have to keep up with their update schedule, but you will probably
find it’s not that hard.

If you’re pummeling a Logstash daemon with tons of UDP syslog messages, you will
eventually find your socket buffers overflowing, especially due to the burstiness of
sending log messages. Increasing the default socket buffer sizes to around 8MB
fixed this on all but my busiest relays. Some will just need more machines to properly
divide the load.

To further help this out, I setup Logstash with UDP syslog listeners on multiple ports
and used iptables rules to round-robin incoming port 514 packets to all the listening
sockets.

● Scalability is delivered in a magic box
○ The magic box is hard to open

● Separate data and master processes
● Memory is a goodness.
● Segregating recent data to faster storage

is harder than it should be
○ Segregating between faster machines is easy

● Official Elasticsearch Training = awesome

Elasticsearch

Time: 0:45

Elasticsearch is a magic black box. You give it data, and it generally gives it back to
you when you search for it. Out of the box, you’ll get a working system very easily,
but there are many things to change before it enters production to ensure the cluster
will remain stable and reliable.

Couple of important parts:
● Separate data-only and master-only nodes is a very important point, having to

do with JVM garbage collection. I’ll detail it more later.
● Learn about how to speed up certain searches that are important to you by

making sure certain fields are parsed out of log messages by Logstash before
the JSON documents are submitted to Elasticsearch for indexing. Keyword
searching is great for finding things, but not for visualizing in structured forms,
and it’s not the fastest thing in the world with a ton of data.

● A little familiarity with using the REST API is critical to really managing
Elasticsearch at scale. It’s a very easy API to understand. A little Python with
the Requests library and some JSON parsing was about all I needed to
accomplish nearly anything.

● Memory is a goodness.
● I expected to have fast and slow storage available on my nodes and move

older data to the slower drives. I made it work, but it would have been easier

● to let Elasticsearch do it at the node level instead by creating fast and slow
nodes, and letting it move data to the slower nodes as it aged.

● The Elasticsearch Training is very well worth it, and they probably have a
session in Boston or NYC in the near future, so you don’t have to travel far for
it. I learned a lot, not just from very competent engineer instructors, but from
the experiences of other folks in the training as well.

● Having well-structured input worthless.
● Splunk had the best authentication and

authorization flexibility
● Built in Layer 7 routing, sort of...

○ Nodes need to reach each other
○ Simplifies overall system design
○ Relies more on local agents

● Subjectively slowest web interface

Splunk

Time: 2:00

You can talk to Splunk’s sales team and get a free trial. You’ll want it if you want to
play with it and see how to set it up. The sales and sales engineering folks I worked
with didn’t really know a ton of technical details about it or anything about the
competitors.

They will insist that data isn’t indexed until you search it. It’s definitely true that data is
ingested as just raw text and you can reconfigure Splunk to interpret the data
differently after the fact. And it doesn’t take Splunk too long to make those changes
visible to you and start giving out results for searches. That said, you can also create
saved searches that will pre-seed the search indexes for certain patterns that you
know you know you’ll need for certain reports. One thing that is clear is that Splunk
doesn’t care for the purposes of my prototype that all the data was already well-
formed JSON documents. Splunk focuses far more on just having the data, and
letting you manipulate it at search time with filters, regular expressions, and other
commands.

They have a 100-page instruction manual that shows you exactly how to use their
search syntax and plugin system to generate the report you want. They use pipe
symbols to link multiple filters/modifiers/etc eventually into a description of a chart
type and options. It’s complicated, but very powerful.

Splunk has easy integration with LDAP and other authentication backends. You can

restrict types of data, reports, configuration, etc to specific users and groups with very
fine-grained ACLs for every function you can imagine in the Splunk interface. If you
want security out of the box that gives you the flexibility to restrict access to data in
your centralized logging system, there is no other option than Splunk. Graylog2
supports some of this, and ELK doesn’t have any of it, though you could certainly
implement some simpler security in ELK.

Splunk expects all the nodes to be able to reach each other. A search head needs to
be able to pull in and merge data from all the data nodes in the cluster, wherever they
are. This makes it very flexible when it comes to making sure data is well-distributed
against failures of specific machines. Adding more machines is easy and free, since
there is no per-machine licensing cost.

And yes, since I brought up licensing, I’ll be very clear that Splunk was good, but it
was expensive. Our installation would have required a 10x budget increase to utilize
Splunk. Literally, we could add up our costs to run the search/indexing infrastructure
in EC2 on 3-year reserved instances and lots of EBS storage, and then throw another
0 on the end to year over year cover the licensing costs for that 3 years. They don’t
care about the number of machines you run on, or the amount of data you store. It’s
entirely based on how much data you ingest each day, letting you manage the
storage needs for whatever retention you want on your own.

● No built-in authentication/authorization
support

● Web interface not as flexible as Splunk

Kibana/Elasticearch

Time: 0:30

Quick explanation - All l/O and configuration with Elasticsearch can happen through
its HTTP REST API. Kibana is just an HTML/CSS/JavaScript application that
interacts with the Elasticsearch API via JSON requests and responses.

It’s relatively easy to proxy connections through nginx or Apache and cover your
whole installation behind some HTTP authentication, but you won’t easily be able to
filter certain data sets or elements on a per-user basis. There is an Elasticsearch
plugin that is aiming to provide more of this, but it’s not there yet.

Configuration of the indexing and parsing operations all happens in the configuration
files for Logstash, so those parsing administration tasks are protected by filesystem
access and config file changes.

Getting full use out of searching different types of data and taking advantage of the
visualizations available will be easier if you understand how Elasticsearch treats
fields, types, multiple values, different character sets, etc. The Elasticsearch Training
is a huge help here.

● Uses Elasticsearch, but differently from
Logstash/ELK

● Good authentication/authorization support
since all access is through a web
application

● Subjectively quickest web interface
● Master/slave arrangements to maintain
● Poor documentation

Graylog2

Time: 0:30

● Graylog2 is also based on an Elasticsearch search indexing backend, but it’s
entirely hidden behind the Graylog2 applications.

● It’s got authentication and authorization configuration to restrict access to
particular reports to particular users or groups.

● It’s got the quickest web interface, but definitely the least capable of them as
well.

● It’s cluster configuration is more like a master/slave arrangement. Since you’
re not sending logs directly into Elasticsearch, this is a big downgrade from the
ELK approach, where you can send documents to any of the machines in the
cluster to get them indexed. That’s far more horizontally scalable than
Graylog2.

● The documentation is poor.
○ Never figured out why some pages just showed errors.
○ Never figured out how to do regular expression searches

● Ultimately, the community support that makes ELK a contender for Splunk just
isn’t there for Graylog2.

Elimination of Graylog2

https://www.flickr.com/photos/salman2000/10842578213

Time: 1:00

It’s at this point of the comparison that Graylog2 has to be eliminated.
● We do have a lot of logs with geographic coordinates, but Graylog2 has no

mapping visualization.
● Some of it’s plugins for configuration to connect it to PagerDuty or HipChat are

available, but plugins aren’t as core a part of the structure of the application as
with Logstash, so the selection of options is far more limited. Lots of output
options would end up being custom-scripted call-out scripts that you have to
write yourself and are just triggered by Graylog2.

● Graylog2 didn’t really have a good option for correlating multiple related
events. Splunk could do this with sub-searches that search for some specific
results in a set of data immediately following another result. Logstash could
accomplish this with something like the elapsed plugin which will notice one
event flow through the system and then look for the next related event to link
to it in a single entry.

● Direct access to Elasticsearch with the ELK stack is a fundamental aspect of
using it, whereas access to Elasticsearch with Graylog2 makes you miss out
on a lot of the benefits of using the Graylog2 application. Since it’s not used
heavily in the Graylog2 community, it ends up being a more poorly supported
pathway in general.

● Graylog2 really doesn’t have an API-friendly way to get to the data you want.

● Ultimately, while you could find logs in the Graylog2 system to ascertain the
conditions behind every use case we had, we couldn’t build a dashboard that
would only show the relevant information with the necessary aggregate
statistics or correlation between events that we were looking for.

ELK vs. Splunk on Indexing

ELK Splunk
Indexing Data is indexed at ingestion. Data is ingested raw.

Search-time Data is searched and returned. Data is parsed at search-time.

Reindexing Re-indexing is necessary to re-parse
the data and index it differently.

Define the methods to parse raw data in
your search queries.

Time: 1:10

It’s easy to understand how data gets into Elasticsearch via Logstash. Logstash
accepts messages, parses them with filters, conditional logic, and tags, and it spits
out structured JSON documents for each event. Elasticsearch takes in those JSON
documents and indexes the data for easy retrieval and statistics aggregation.

Splunk says they only ingest and store raw data, and that it’s the reason they scale so
well. They don’t have to process anything on ingestion and its immediately available
because searches are all executed against that raw data. You can redefine the
formats of incoming data and assemble filter chains in the web interface that will re-
parse data according to the patterns you’re looking for. This is very powerful. You
can also create reports that are pre-compiled and pre-indexed so they will be faster if
you expect to request them often.

To accomplish this kind of flexibility in Elasticsearch, you would have to re-index the
data you are processing, literally reading out the documents with something like
Logstash, parsing/modifying/filtering them as you wish, and then indexing them back
into the database. This is a very heavy process. In the ELK world, it’s probably
easier if you just imagine that once you find a pattern you want to keep being able to
parse, you should make the necessary changes to your Logstash rules and indexing
rules, and then just accept that the desired searches will come up empty against
historical data.

ELK vs. Splunk on Plugins

ELK Splunk
Types Lots of input and output plugins for

different technologies and protocols.
Mostly about visualizations or providing
information to other applications. Very
few I/O related.

Community Very active community support:
Plugins aren’t an add-on so much as
the architecture of Logstash.

3rd-party vendor contributions available
in a “store” accessible from the web
interface.

Availability Free and easy to modify or develop Some free, some cost $$, and any other
integration help will come from
mandatory Splunk support.

Time: 1:00

Plugins are one of the biggest differentiators between these toolsets. They have very
different approaches to plugins.

If you want to integrate your logging with literally everything else, Logstash is really
your best bet. There’s an awesome community full of people solving the same
integration problems you probably have, and it’s easy to make your own plugins.
Logstash is really nothing except a framework of plugins for every function it serves.

If you want to collect event information from the Heroku API and a twitter feed or two,
count stats to submit to graphite, translate certain types of messages into alerts in
your internal chat system, send someone a page, and then store the data in S3, you’
re going to find the solution in Logstash.

If you want to pay someone else to integrate your logs into some package you’ve
probably already paid a lot of money for, the Splunk store may have a solution for
you. It’s far more targeted at other vendor-supported integrations. The Splunk store
will have a lot fo visualization tools for different types of business intelligence, custom
dashboards that are ideal for particular vendors equipment logs, link usernames in
logs to your Active Directory for more information about the user, etc, These are the
types of solutions in the Splunk store.

Or you can put your Splunk support team to work for you. That support is a

mandatory (and expensive) cost of at least your first year with Splunk to ensure you
get your data to work for you, but they basically promise that they will make whatever
you need happen.

Questions before Implementation?

https://www.flickr.com/photos/paukrus/9826882836

Time: 0:10

Any questions so far before I get to the implementation of our architecture?

So we went with ELK. Cost was one motivator, but honestly the extra features that
Splunk offered just weren’t high on our list of requirements. They would be nice to
have, but not nice enough to justify the cost. And the extra flexibility we got with
Logstash has really opened up more possibilities too.

● Anycast Log Relays in VMs on our
network
○ Logstash, RabbitMQ

● Centralized Logging Servers in AWS
○ RabbitMQ, Elasticsearch, nginx, Kibana

Architecture

Time: 0:30

We’ve got two machine types in our system now.

The log relays are the logstash side of the system, accepting messages, parsing
fields, etc. They deliver to local RabbitMQ exchanges, which use shovel threads to
move messages from those queues into our core datacenters where we have
routable access to our AWS instances.

The relays in our core datacenters have shovels that push the messages to the
RabbitMQ processes on our centralized logging servers in AWS. The messages get
from RabbitMQ to Elasticsearch by using an Elasticsearch River plugin - I’ll talk more
about that in a second, but it’s worth mentioning that there are several Elasticsearch
River plugins for bulk indexing data from 3rd party sources like RabbitMQ, Wikipedia,
Twitter, Amazon SQS, CSV data, Dropbox, GitHub, JDBC, Redis, etc, etc, etc. In our
case, we used the RabbitMQ River plugin to pull in messages formatted already for
bulk indexing.. Each Centralized Logging Server runs two separate Elasticsearch
data and master processes, called nodes, as well as nginx to serve the Kibana web
interface and proxy requests to the Elasticsearch HTTP API.

● Shovels are awesome.
● Dynamic shovels are better.
● You will eventually want to re-route

messages, stop and start shovels, etc.
● Restarting a daemon with backed up

queues is very slow.

RabbitMQ and Shovels

Time: 0:20

As a reminder, shovels are those threads embedded in the RabbitMQ Erlang virtual
machine that act as an AMQP client reading messages from one queue and
delivering them to another exchange. They can be configured in the daemon config
files, but then you need to restart RabbitMQ in order to make adjustments to them. If
you configured them with API calls, they can be created and destroyed and
reconfigured on the fly.

Since restarting a RabbitMQ daemon with a bunch of messages in queue can take
awhile, this is almost always more flexible.

● Rivers allow Elasticsearch to subscribe to
messages from queues directly

● Logstash has an output called
elasticsearch_river
○ Formats messages in RabbitMQ for bulk indexing
○ Contacts Elasticsearch API to configure the river

● Cluster has one River for each Centralized
Logging Server RabbitMQ queue

Elasticsearch River

Time: 1:10

● We’re making use of Elasticsearch Rivers for ingesting messages into the
Elasticsearch cluster. This is similar to a shovel in Elasticsearch terms.

● A separate thread in the Elasticsearch JVM will be dedicated to the river and
will ingest messages formatted for bulk indexing.

● In particular, the RabbitMQ River Elasticsearch plugin creates a thread for an
AMQP client to read in messages from the RabbitMQ queues.

● Logstash has an elasticsearch_river output plugin that will send messages
formatted for the Elasticsearch Bulk API into RabbitMQ, and it will also setup
the River thread in the corresponding Elasticsearch cluster.

○ I’m actually using a modified version of the elasticsearch_river plugin.
○ Mine is different because the Logstash processes around our system

cannot all reach the Elasticsearch cluster, and I don’t want them each
setting up their own copy of the same rivers anyway.

○ I use a Python script talking to the Elasticsearch API to manage the
rivers that should be configured at any time instead.

○ It was really easy to take the code that is used in the
elasticsearch_river plugin, make a few minor changes, and deploy my
“new” plugin alongside all the built-in Logstash plugins.

Logstash Inputs
input {
 tcp {
 port => "514"
 type => "syslog"
 tags => ["syslog"]
 }
 udp {
 port => "514"
 type => "syslog"
 tags => ["syslog"]
 queue_size => "2000"
 workers => "4"
 }
}

Time: 0:10

Logstash config files are pretty easy to understand. Here’s a simple input section that
sets up listeners for syslog.

Logstash Filters
filter {
 if ("syslog" in [tags])
 grok {
 type => "syslog"
 pattern => ["<%{POSINT:syslog_pri}>%{SYSLOGTIMESTAMP:
syslog_timestamp} %{SYSLOGHOST:syslog_hostname} %{PROG:syslog_program}
(?:\[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}"]
 }
 metrics {
 meter => ["syslog_events"]
 add_tag => ["metrics"]
 flush_interval => 60
 }
 }
}

Time: 0:40

Here’s a filter section that can be used to do all sorts of things in response to types of
messages. You can use boolean and conditional logic to skip around in here. This
config is looking for all the messages that have been given the tag syslog, using grok
parse out the typical syslog fields and metrics count them in our syslog_events
counter so the counter can be sent to Graphite. Here’s some examples of other stuff
you can do with filters...

● Anonymize fields in log lines with hashes
● Encryption of fields
● GeoIP lookup of IP addresses to add lat/long coordinates
● Check IPs against CIDR network notations
● Drop, clone, or modify messages or fields
● Throttle similar or identical events
● Combine multiple lines like a stacktrace into a single event
● Process syslog PRI header
● Translations
● There are tons more...

Logstash Filters
if ([syslog_program] == "named") {
 grok {
 match => ["message", "^(?<named_category>[-a-z]+):"]
 tag_on_failure => []
 }
 grok {
 match => ["message", "notify: client %{IP:named_remote_ip}#%
{NONNEGINT:named_remote_port:int}: received notify for zone '%
{HOSTNAME:named_zone}'"]
 add_tag => "named_received_notify"
 tag_on_failure => []
 }
}

Time: 0:10

Grok is kind of an ugly thing to parse, but it’s really just regular expressions under the
covers.

grok debugger = awesome

Time: 0:10

If you’re like me, you’ll really want to play with grok a bunch. This Heroku app called
the Grok Debugger is awesome.

grokdebug.herokuapp.com lets you key in a pattern and a log message and you’ll see
easily how well it parses.

Logstash Outputs
output {
 if ("metrics" in [tags]) {
 graphite {
 host => "metrics-relay0-01-any.dyndns.com"
 metrics => ["logs.HOSTNAME.syslog", "%{syslog_events.count}"]
 }
 }
 else {
 newelasticsearch_river {
 'rabbitmq_host' => 'localhost'
 'rabbitmq_port' => '5671'
 'ssl' => true
 'verify_ssl' => true
 'user' => 'guest'
 'password' => 'sssh… secret!'
 }
 }
}

Time: 0:25

And here’s an example outputs section from Logstash, again making use of simple
boolean and conditional logic.

Our metrics filter created a new event every 60 seconds with the metrics tag. It’s a
counter for the number of matching messages. We’re sending those events off
through the Graphite output plugin.

All the other messages are going off to our Elasticsearch cluster.

● Create/Delete RabbitMQ Shovels
● Create/Delete Elasticsearch Rivers
● Move indices to larger, slower long-term

storage
● Creating Elasticsearch aliases

○ I’ll get to these in a few

Support Scripts

Time: 0:30

I did create a few really helpful scripts to interact with the RabbitMQ and Elasticsearch
APIs for our system.

This system is highly dependent on being able to freely move messages around
among the RabbitMQ queues. It’s important to have both these first two scripts
available for automation and interaction.

Logstash indexes data into Elasticsearch with indices named for the date, so it’s easy
to see when no new information is coming into an index. If you want to move it, you
can close the index and do whatever you like with the files on the filesystem, symlink
them from somewhere else, etc.

And finally, there’s a script to manage the Elasticsearch aliases, which I’ll get to in a
few minutes.

Pitfalls

https://www.flickr.com/photos/eurleif/186807031

Time: 0:10

If you follow everything I’ve told you, you’ll probably have an issue somewhere, but I
won’t pretend to know where your particular pitfalls will be. I’ll tell you a bit about
some of ours.

● RabbitMQ can be disk I/O friendly
● Maybe some message loss is okay?
● If it gets backed up and has to swap to

disk, it will go really slow.

RabbitMQ and Disk I/O

Time: 0:25

If you’re okay with messages only existing in memory, you can opt to just lose
messages if the daemon stops/starts or the queues fill up. A persistent message will
be pushed to disk if it isn’t picked up right away. So you don’t want your queues full of
persistent messages to get backed up.

If a queue full of persistent messages starts swapping to disk, it will slow down a lot
and you’ll want to adjust the shovels to route around it to keep the system moving
smoothly. A message queue that has no new messages entering it will drain much
faster than a queue that has a constant stream of new messages coming in because
of the FIFO nature of the queues.

If you want persistence for messages, then that advice before about dynamic shovels
before will be very helpful. Restarting a daemon with a full queue will be slow. If you
manually re-route things under high-load conditions, you’ll be happy you have easy
control over dynamic shovels.

● Separate master-only and data-only nodes
● Rivers are awesome
● The Elasticsearch cluster will pick nodes

for the River threads
● Memory utilization is based on amount of

data online

Elasticsearch Node Types

Time: 1:10

Each Elasticsearch process is called a node in the cluster. Out of the box, one node
will be elected as the master, responsible for allocating shards of indices to different
nodes in the cluster. The master isn’t a lot of work, but it’s important work.

There are two types of garbage collection in Java, old generation and young
generation. When the process is really running tight on memory, the old generation
stop-the-world garbage collection will trigger and the process will go silent to
everything else until it’s done. If the master enters old generation garbage collection
for too long, then the rest of the cluster may decide to elect a new master since it
appears to be gone. When it comes back, you have two masters, a split brain, and
some data loss.

This is a real problem for Elasticsearch no matter what, but it’s actually not too hard to
avoid in practice. Each machine/server in our setup runs two Elasticsearch
processes. One is configured to be master-eligible, but not data-eligible. The other is
configured to be data-eligible, but not master-eligible. The master-eligible nodes have
minimal memory, less than half a gig. The data-eligible nodes will have about half the
system’s memory dedicated to their stack. The rest can go to the OS for disk cache
and other needs. Once the masters are responsible for sitting idly waiting for an
election or doing the relatively minimal work of being a master, they won’t use enough
memory resources to ever require old generation garbage collection. The data nodes
may, but they can also disappear for a bit without repercussions to the cluster.

Once you have dedicated master and data nodes, make sure your master nodes
aren’t also eligible for getting rivers assigned to them. The cluster will select nodes to
run the River threads, and unless you tell it otherwise, it may select one of your
master-only nodes. You don’t want the masters doing any more work than they have
to.

After that, you can still find your cluster struggling with availability or stability if it
doesn’t have enough memory space around for working with result sets and caches.
Closing old indices will be necessary. Every open shard/index will take up more
memory. It’s trivial to bring older indexes online if they are on disk, and only takes a
few seconds. You should just make sure to have enough memory and enough nodes
in your cluster to have all the indices you want open. Older indices should be opened
just when you explicitly want to search them. More memory is always better.

 ● Easy: close, delete
indices

● Hard: purge data
from an index

● Also Hard: search
a big index

Elasticsearch Indices Retention

logstash-2014.08.22

logstash-2014.08.23

logstash-2014.08.24

logstash-2014.08.25

logstash-YYYY.MM.DD ...

Time: 0:35

When using Logstash to put data into Elasticsearch, it gets arranged into indices
named like this by default.

This makes age-based management of indices really easy. Opening, closing, and
deleting indices are trivial operations requiring just a few seconds. Moving an index is
just the work of the disk I/O while an index is closed.

It’s really important though to recognize that you cannot just delete some of the data
from these indices. They are all-or-nothing operations. Trimming or purging some
information from an index effectively requires rebuilding the index from empty.

Also, as these indices get bigger, their performance will suffer. We started noticing
that for our cluster when indices were about 100GB in size, maybe 200 million
records, but every cluster will use a different number of different types of machines,
different sharding strategies between nodes, different document sizes, etc. It’s hard
to extrapolate from one setup to another where you’ll run into limitations.

Elasticsearch Indices and Aliases

logstash-2014.08.22 logstash-2014.08.22_mhtfirewalls

logstash-2014.08.22_security

logstash-2014.08.22_named

logstash-2014.08.22_default

Optional:
● Filter terms
● Query terms

Time: 0:40

We specifically wanted to maintain different retention rules for different types of logs.
We want to be able to easily save firewall and security-related logs for a longer
amount of time without storing everything from those days. Also, a lot of our saved
dashboards only needed to access one clear subset of the logs we were storing.

Elasticsearch has a function called aliases that can help here. Aliases are very
similar in concept to views in a SQL database. You can specify source indices and
query/filter parameters as part of your index alias.

We configured Logstash to store data in indices named like these on the right, and we
create the typical Logstash-DATE index names as aliases. The Kibana web interface
will default to searching the alias, and it will work as expected. As far as search
queries are concerned , searching an alias and searching an index are identical
requests.

But this setup gains us two really helpful advantages:
● We can delete the default index that we aren’t that attached to, while keeping

the security logs for longer-term retention. We can keep the named logs for as
long as the DNS team tells us they want to track them.

● If building a dashboard that focuses on only BIND logs, we can speed it up a
good bit by letting it focus on only the _named indices. It doesn’t have to

● search the other indices that were only going to return 0 results anyway.

filter {
 if ([syslog_facility] == "security/authorization") {
 mutate { add_field => ["retention_index", "secauth"] }
 } else {
 mutate { add_field => ["retention_index", "default"] }
 }
}
output {
 newelasticsearch_river {
 'rabbitmq_host' => 'localhost'
 'rabbitmq_port' => '5671'
 'ssl' => true
 'verify_ssl' => true
 'user' => 'guest'
 'password' => 'sssh… secret!'
 'index' => "logstash-%{+YYYY.MM.dd}_%{retention_index}"
 }
}

Elasticsearch Indices and Aliases

Time: 0:15

Here’s a snippet of how I configured this sharding index/alias setup with Logstash’s
filters and outputs.

You can see in the filter section that I added a field to events according to matching
certain characteristics.

Then, in the output section, I used that new field as part of the destination index
name.

Elasticsearch Indices and Aliases

Time: 0:10

Here’s where we can configure the Kibana dashboard interface to look in only specific
indices. There are little gear icons in Kibana for settings. The one in the upper right
corner lets you specify dashboard settings like what indices to query.

Advice

https://www.flickr.com/photos/patgaines/4558323774

Time: 0:10

So here’s my best attempt to give some takeaways in the form of advice for the
various tools employed in our architecture.

● Learn about AMQP exchanges, queues,
and bindings

● Don’t rely on shovels, rivers, or anything
else to configure your RabbitMQ daemon
○ Use the load_definitions options

● Shovel configuration scripts and API

RabbitMQ Advice

Time: 0:45

It’s worth learning about the types of exchanges, queues, and bindings in AMQP once
you are trying to get a bit more flexibility.

Nearly every AMQP client (including Elasticsearch Rivers, RabbitMQ shovels, and the
Logstash RabbitMQ output plugin) will have options to automatically set up these
elements for you. Even RabbitMQ as a server will automatically bind certain queues
to your default exchange. These are helpful to getting started quickly, but I eventually
found too much confusion trying to make them play nicely. For example, creating a
queue will fail if another queue already exists with the same name but slightly different
settings. This probably won’t be an issue if you just setup a RabbitMQ daemon and
leave it alone, but automation is a lot easier with explicit controls.

I found it best to have RabbitMQ configured to use the load_definitions option, which
allows setting up the users, passwords (hashed), exchanges, queues, and bindings at
startup in the configuration files.

I also found it best to set up shovels via API calls, rather than with static configuration.

● Elasticsearch Rivers = awesome
● Cron jobs with elasticsearch curator
● Management plugins: HQ, head, kopf

Elasticsearch Advice

Time: 0:30

The Elasticsearch River plugins are a great approach to ingesting large amounts of
data fast. Setting them up with API scripts is really easy and worthwhile.

The Elasticsearch curator is a script that Elasticsearch has created to automate index
management. Use it as much as possible in your long-term index management,
performance management, etc.

There are lots of management plugins for visually interacting with an Elasticsearch
cluster. HQ, head, and kopf are my favorites. I’ll show screen shots of each in a
second. They are all pretty easy to try out since they all are HTML and JavaScript
and CSS web pages that interact with Elasticsearch via JSON calls like Kibana. You
can open them locally and just connect to a remote Elasticsearch cluster API via URL,
or you can install them to be hosted from your cluster directly.

Elasticsearch HQ

Time: 0:15

Here’s a couple of screenshots of Elasticsearch HQ. It’s one of the prettiest
management interfaces for Elasticsearch, that is best for viewing the performance of
the cluster and nodes, the statistics about the indices, etc.

Elasticsearch head

Time: 0:15

Elasticsearch head is the best way to view the distribution and migration/recovery of
index shards between nodes. It also includes a great way to “browse” actual
document data in the cluster as well.

Elasticsearch kopf

Time: 0:20

Kopf combines the visualization of shard distribution between nodes with a lot more
management and configuration settings to affect how the cluster is configured, how
the cluster handles recovery, management of aliases, percolators, warmers, etc.

● Understanding of shards and indexes and
performance and scaling

● Operational usage
● Using a search engine for non-logging

stuff
○ Relevency, boosting results, suggestions, etc

● Text analysis with different character sets,
languages

Elasticsearch Training

Time: 0:30

There’s a lot of Elasticsearch usage beyond logging, and their “Core Elasticsearch”
Training goes into all of it. It may not be directly applicable to the task of logging, but
the applicable material was worth it. The most valuable part of the training is that it’s
taught by engineers in Elasticsearch who know the answers to the questions you’ll
find yourself and others asking. The other people in the room are often large users of
Elasticsearch who have valuable insights for you too. I learned as much from the
experience and questions others brought up as I did in the class material.

● Use it
● Be an expert logger

Logstash Advice

https://www.flickr.com/photos/minifig/95040634

Time: 0:15

In all seriousness, Logstash is really useful as a stream processor of events. Even if
you go with Splunk or Graylog2, you may find a place to use Logstash. It will do
whatever you can think of, and it’s really easy to understand and make useful. I think
I have a lot less advice for Logstash than RabbitMQ and Elasticsearch in my setup
because it’s just a lot more straightforward.

Questions?

https://www.flickr.com/photos/james_wheeler/9619984584

