
Bufferbloat
Views of the Elephant

Jim Gettys

Bell Labs

October 6, 2012

james.gettys@alcatel-lucent.com, jg@freedesktop.org

mailto:jg@freedesktop.org
http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Outline

 Demonstration
 Essential Information
 Path Bufferbloat
 Aggregate Bufferbloat
 Transient Bufferbloat
 Solutions

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Common Laments of the 2012 Era Internet....

“Daddy, the Internet is Slow Today!”

 “Junior, stop what your are doing on your computer so I can make a phone call!!!”

 “Boy, this conference's wireless network was working fine before everyone sat
down, but now it's horrible!”

 “My cell phone's 3g network is incredibly slow here, though my signal strength is
good!”

 “Sorry, I didn't understand what you said, Skype/Vonage is having problems right
now and you dropped out for an instant!”

 “My home network is useless whenever I backup my computer!”

 “This motel's network is unusable; even Google Search is glacial!”

 What do all of these laments have in common?

 Bufferbloat!

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Demonstration video

 http://www.youtube.com/watch?v=npiG7EBzHOU

http://www.youtube.com/watch?v=npiG7EBzHOU
http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Buffers are everywhere, and will fill!

 Buffers are necessary to smooth bursts of packets.

 A single TCP connection will fill any size buffer given time; the buffer your TCP
will fill is the buffer just before the bottleneck link.

 TCP's design presumption, that there will be timely packet loss to signal
congestion, has been violated by these buffers.

 UDP applications (e.g. RTCWeb) have no such limitations (and do not yet even
deal with congestion control: see IETF rmcat working group.

 These buffers, no longer serving their original purpose, only add delay.

 AQM (Automatic Queue Management) is essential to avoid elephant flows
and queues filling: and TCP's responsiveness is quadratic in the delay,
the elephant herds really don't like to share

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

"Netalyzr: Illuminating Edge Network Neutrality, Security, and Performance"
C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson

Arrow direction is increasing latency
Note: telephony standards for latency are maximum of 150ms!!!

This data is a lower bound on the severity of the broadband bufferbloat problem.

Uplink Downlink

 Green diagonal line == .5 second latency black diagonal line == 4 second latency

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

What happens when a network is slow due to bufferbloat?
- protocols fail due to both packet loss & high latency timeouts

 Once a network/link exhibits high latency and bad packet loss, other critical,
statistically insignificant but mission critical packets can't do their jobs
 DNS – adding 100's ms or seconds of latency to lookups kills web browser

performance and losses cause lookup failures
 ARP - relies on timely resolution to find other devices on your network
 DHCP - if these packets are lost or excessively delayed, machines can't get on

the network
 RA and ND - essential for IPv6 functioning
 VOIP/teleconferencing- needs about a single packet per 10ms flow in order to

be good, and less than 30ms jitter.
 Gamers - will get fragged more often with latencies above their twitch factor
 Responsiveness of all network applications, web or otherwise, suffers

 Protocols can fail entirely with timeouts & excessive packet loss

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Buffers only fill when they are next to a saturated
bottleneck – at all other times they are “dark”

 Your hosts, in your applications, and in socket buffers and network layers

 Your MAC itself may have packet buffers internally;

 Network device drivers themselves

 Your network interface's ring buffer potentially buffers thousands of packets

 And the VM system your OS may be running on top of may add yet more layers

 Your wireless access, in both directions

 Cellular Wireless Systems have major problems: it's why your cell phone may be very slow

 802.11 has similar issues: long packet delays destroy timely notification

 Your switch fabric (8 ms/switch at 1GBPS): how many hops, how congested?

 Your home router – potentially megabytes

 Your CPE/cable modem/FIOS box – potentially megabytes

 The head-ends of those connections (e.g. DSLAM, CMTS, etc.)

 Each and every router and switch in your path, and the line cards in those routers

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Bufferbloat Situation

Buffers only fill before a bottleneck. But those bottlenecks
are now routinely next to any wireless device

Hypothesis: most (but not all) bufferbloat locations we
experience are in the edge: e.g. home & cellular networks

But beware of back-haul networks too!

Home routers and hosts, tablets and cell phones are at
least as bad as broadband

Problems are all over the Internet: the edge is likely the most
severe, though it is endemic in hosts, home routers,
broadband gear, 3g, some switches, overloaded routers....

Reminder: there are two bottlenecks are in play in the home

Broadband hop (single bloated queue!)

Wireless hop (potentially four HW queues in 802.11)

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, August 31, 2012 © Alcatel-Lucent 2010, 2011, 2012

Home bufferbloat: there are usually two bottlenecks! And it moves!

Modem

Broadband
Bottleneck

WiFi
Bottleneck

Downstream queuesUpstream queues

Sometimes in one box

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Transient Bufferbloat

 Web browsers and Web sites are doing Evil together

 Web browsers no longer limit the number of TCP connections

 Web sites are now often “sharded”: split across a number of different
names

 Has destroyed any congestion avoidance when Web surfing

 Extreme example

 CNN.com-> induces 60 simultaneous TCP connections!

 @ IW 4, that is 240 packets, or 360K bytes (3Mb) in flight to your
customer's broadband connection, which has a single grossly
overbuffered queue so from the server side you see little packet loss!

 What do you think happens to your customer's VOIP/Skype conversation?

 Is this what you want to do to your “customer”?

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Streaming Video Isn't Streaming at all

 “Streaming” video is really TCP transfers of video “chunks”

 Think of it as periodic moderate sized file transfer

 Each “chunk” is inducing temporary latency to your broadband connection to the
Internet, by running TCP as fast as it can to transfer the “chunk”

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Netflix “streaming” Behaviour

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

Host bufferbloat, and your home router

 Since today's home routers are usually using general purpose operating
systems (usually Linux), the problem is on both sides of your wireless link

 Buffers hide in multiple places in modern OS's + hardware
 (Linux, Macintosh, Windows alike)

 Let's do a simple calculation, presuming 10Mbps actual data transfer
rate:

 256 packets is of order 3,000,000 bits == 1/3 of a second (one way)

 What happens at a busy conference, where your “fair share” might be
100Kbps? 30 seconds: applications (and people) timeout entirely....

Fixed size buffering is usually nonsense

 Buffering must always be dynamically managed!

 Automatic Queue Management is a necessity, not a nice to have!

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2010, 2011, 2012

Internet

What happens in a complex network?

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Aggregate Bufferbloat

 What happens in a complex network?

 Your packets can get stuck behind other people's queues, not just in your
bottleneck, but in other bottleneck links.

 So you can have additive bufferbloat; each saturated hop will add its delay.

 We saw this in the 1980's and 1990's when the core of the Internet was always
congested.

 We thought (W)RED fixed this problem in the 1990's. But really, fiber and enough
capacity fixed it instead.

 Because (W)RED is fundamentally flawed... It requires tuning, and can hurt
you if you tune it incorrectly. As a result, many network operators do not
enable it even when they should.

 But it's all you have today in most core routers....

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Mitigations

 1) Twist knobs to reduce the problem; once you understand the problem,
you can sometimes reduce bufferbloat by twisting knobs to less insane
values.

 2) Engineer to put the bottlenecks someplace where you can control the
buffering: e.g. the bandwidth shaping “hack” I demonstrated.

 The fundamental problem remains: the (wireless) hop next to the
user's devices are highly variable and “correct” buffering is
unknowable: you don't know either the delay, nor the bandwidth.

 Drop tail queues always add unnecessary latency.

 Fundamentally, all buffers before potential bottlenecks must be
managed.

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Solutions

 Delay sensitive TCP's

 Doesn't solve the UDP problem, with WebRTC coming, this will soon
become critical

 Requires fork-lift upgrade of everything

 We don't have a TCP algorithm that really “works” and does not lose in
competition with existing TCP's

 Automatic Queue Management

 Enable and configure (W)RED where appropriate, while waiting for
something better

 “Something better” finally exists. And “Something better” must not
require human intervention: it should “just work”, and “do no harm”.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, uly 29,, 2012 © Alcatel-Lucent 2011, 2012

But wasn't AQM solved in the 1990's?

 The classic AQM algorithm is RED, (Floyd and Jacobson, 1993)

 Over ten years ago, Kathie Nichols walked into Van's office one
afternoon, and showed him that RED has two bugs

 Kathie Nichols & Van Jacobson twice tried to publish papers explaining
RED's flaws

 A 1999 draft of RED in a Different Light draft did escape

 (W)RED requires tuning, and the 100 or more papers about RED tuning in
the last decade confirm this. Ergo, network operator's reluctance to
enable RED is understandable, even if their fears are (usually, but not
completely) excessive, since RED must be used carefully!

 And RED can't work at all in the face of variable bandwidth, such as
found in broadband, and wireless

 We need something better: enter the CoDel (“Constant Delay”) algorithm

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

CoDel Status

 See Van Jacobson's presentation at the Vancouver IETF of Kathie Nichols
and Van Jacobson's new CoDel (Constant Delay) AQM algorithm:
published in the CACM, July, 2012, available on the ACM Queue website:
Controlling Queue Delay

 Linux 3.5 has codel and fq_codel queue disciplines: fq_codel combines
CoDel with SFQ: fq_codel by Eric Dumazet, SFQ by Paul McKenney

 Work on refining the CoDel's design and implementation continues

 Van Jacobson (and everyone who has worked on CoDel), recommend
fq_codel over codel

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

We really, really, really like fq_codel

 We cannot reach tolerable latencies due to transient bufferbloat without smarter
queuing: head of line blocking kills low latency applications

 How fq_codel works:

 You put each flow in it's own queue; there are two sets of queues: those which do
not build queues, and those which do build queues

 If a flow does not build a queue, it is scheduled before flows that builds a queue

 If a flow builds a queue, it gets put into a list of queues for lower priority
scheduling. If the flow's queue empties, after a period, it is again put on the list
of queues that gets priority treatment. fq_codel also avoids starvation of queues
that do build a queue; they will make progress; just slowly

 So without explicit classification, your DNS lookups, your TCP opens, your voip
traffic, DHCP, RA, etc, fly through the router ahead of any bulk data

 Fair queuing is only 2% of CPU on 10GigE: proof point that smart queuing is feasible
on today's systems

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

IPFire DSL fq_codel results

1.2 s latency drops to 20ms latency while preserving utilization
But: differnet hardware may have additional buffering

http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://queue.acm.org/detail.cfm?id=2209336
http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Current Experiences from Lantiq DSL driver

 John Crispin (Linux Lantiq driver maintainer & key OpenWrt developer)
has been working on confirming the IPfire results.

 As in other technologies such as Ethernet, the “smart” hardware is
getting in the way: minimum Lantiq ring buffer size is 16 packets

 He's seeing 60ms latency under load on a .5Mbps uplink using fq_codel,
but with 2 packets buffering (30 should be achievable).

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Is CoDel universal? Jury is still out

 CoDel is simpler than (W)RED to implement, and is very amenable to
silicon. But CoDel may be difficult to retrofit into existing designs.

 We're chasing several problems: we don't yet know if they are in our code,
or the CoDel algorithm. We think we have at least one bug in the code
outstanding, and have problems when running hundreds of simultaneous
flows that may require changes to CoDel's control law

 Lack of funding for Kathy Nichols is slowing investigations. Sigh.

 Unmodified, today's CoDel is not suitable if all your traffic is inside a data
center where your RTT's are measured in microseconds; CoDel was
designed for solving the severe problem we have at the edge of the
network.

 But the ideas in CoDel (e.g. Sojourn time) are new and allow for new
attacks on the queue management problem

 e.g. Sojourn time allows use across multiple queues simultaneously: e.g.
fq_codel.

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

There is No Single Bullet for a Low Latency Internet

 Multiple queues are necessary in WiFi; but today we have only one
bloated queue in broadband in each direction!

 One 1500 byte packet @ 1Mbps == >13ms and for VOIP, we want low
latency/jitter access to the medium.

 AQM needed to avoid elephant flows and queues from filling: TCP's
responsiveness is quadratic in the delay

 Smart Queuing is also needed

 “Fair” depends on where you are: I don't mean simply TCP fair queuing but
smart queuing among TCP flows, among devices, among customers, among
policies; we must become much smarter than dumb FIFO queues at bottlenecks

 TCP fair queuing does help RTT fairness, ack compression, interactive versus
non-interactive bulk transfers, etc. Having TCP fair queuing at the host
reduces the surprising RTT behavior seen most dramatically in locations like
New Zealand where RTT's are so dramatically different

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Really Big Headaches

 Current broadband has a single bloated queue

 The technologies admit to additional queues, but these are today only
available to the ISP's telephony services

 How to communication the customer's classification preferences?

 Broadband splits the diffserv domain between the customer & the
broadband head end; the customer only has control of the upstream, so
how does the downstream know what the user needs?

 A explicit protocol

 Andrew McGregor's idea to infer incoming classification & marking
from outgoing marking on flows

 Hypothesis: some bandwidth threshold, smarter queuing without
classification and actual separate queues (e.g. fq_codel) is likely
“good enough”.

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Wireless is hard!

 Remember, there can be (usually are) multiple buffers stacked in an
system! This partition of queues makes proper queue management
difficult.

 Bandwidth is extremely variable: BQL (mostly) solves the driver bloat
problem for Ethernet, but 802.11 can be fast enough we would like to
use some of the smarter hardware at those bandwidths.

 802.11n aggregation requires the driver to have access to many, many
packets underneath Linux's queue disciplines.

 Our operating system interfaces need rethought; how and where do we
run (fq)CoDel across coupled queues?

 But before CoDel/fq_codel, we had no hope for a solution.

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Commercial Home Router Disaster

 Commercial home routers are broken in 4 major ways

 Firmware is horribly antique and insecure; today's latest commercial
home routers usually ships (at least) 5 year old software on new
hardware, which seldom if ever is updated once “stable”, which then
rots for years after that without update

 Decent IPv6 deployment is now gated by the home routers

 Extreme bufferbloat in all its forms

 Tragedy of the Commons: Funding model of the home router market is
broken; there is next to no funding toward engineering to fix problems
today: this means that little will happen without community
participation

 Time to roll up your sleeves and get your hands dirty...
OpenWrt is already years ahead of what you can buy at Best Buy.

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

In Disaster, There is Opportunity: CeroWrt

 CeroWrt is an advanced build of OpenWrt, using WNDR 3700v2 and
WNDR3800 routers for more flash, Atheros radios, and fast CPU

 Every line of code is available to modify; changes that work go
upstream to OpenWrt and Linux as fast as are validated

 Today running Linux 3.3.8 release with CoDel, BQL. Running
fq_codel on WiFi, which is today only partially effective due to
buffering in the drivers due to 802.11n aggregation

 DNSmasq & Current Bind & DNSsec in chroot jail available

 Routes, not bridges; 6 networks in the box

 Real web server, proxy, IPv6 support, mesh networking, extensive
network test tools, etc.....

 Come help test, develop, and improve

 Demonstrate your heretical ideas with running code!

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

Next steps

 Have to upend the dysfunctional home router ecology.

 Make upstream router distro viable to ODM's

 Bufferbloat in Wireless

 Put heat into the economics

 Need consumer oriented tests to encourage changes in buying behavior

 Need to change the marketing discussion: bandwidth != speed. How to
compare networks: Power?

 Need better tools for journeyman engineers

http://creativecommons.org/licenses/by-nc-sa/3.0/

 © Alcatel-Lucent 2011, 2012

There is hope! But much work left to do...

 You can suffer much less at home immediately, if you understand bufferbloat

 Bufferbloat is now understood to be a serious problem in the technical
community, but problems are all over the Internet, from end-to-end

 DOCSIS (cable) will improve greatly very soon, with the deployment of a new
DOCSIS buffer control amendment, starting market place pressure

 We (now, with CoDel) have all the technologies required to build a low latency
Internet, but it requires work in many places

 Linux has made the most progress of any operating system to date with:

 BQL (Byte Queue Limits)

 TCP small queues

 Codel/FQ Codel

 But wireless is hard, and there is much, much, much more to do.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Bufferbloat, August 31, 2012 © Alcatel-Lucent 2010, 2011, 2012

 Remember, we are all in this

 bloat together!
 Please come help before we sink!

 My Blog – http://gettys.wordpress.com

 Other Information

 http://www.bufferbloat.net/projects/bloat

http://creativecommons.org/licenses/by-nc-sa/3.0/

