
Cloud Filesystem

Jeff Darcy
for BBLISA, October 2011



What is a Filesystem?

• “The thing every OS and language knows”
• Directories, files, file descriptors
• Directories within directories
• Operate on single record (POSIX: single byte) 

within a file
• Built-in permissions model (e.g. UID, GID, 

ugo·rwx)
• Defined concurrency behaviors (e.g. fsync)
• Extras: symlinks, ACLs, xattrs 



Are Filesystems Relevant?

• Supported by every language and OS natively
• Shared data with rich semantics
• Graceful and efficient handling of multi-GB 

objects
• Permission model missing in some alternatives
• Polyglot storage, e.g. DB to index data in FS



Network Filesystems

• Extend filesystem to multiple clients
• Awesome idea so long as total required 

capacity/performance doesn't exceed a single 
server
o ...otherwise you get server sprawl

• Plenty of commercial vendors, community 
experience

• Making NFS highly available brings extra 
headaches



Distributed Filesystems

• Aggregate capacity/performance across servers
• Built-in redundancy

o ...but watch out: not all deal with HA transparently
• Among the most notoriously difficult kinds of 

software to set up, tune and maintain
o Anyone want to see my Lustre scars?

• Performance profile can be surprising
• Result: seen as specialized solution (esp. HPC)



Example: NFS4.1/pNFS

• pNFS distributes data access across servers
• Referrals etc. offload some metadata
• Only a protocol, not an implementation

o OSS clients, proprietary servers
• Does not address metadata scaling at all
• Conclusion: partial solution, good for 

compatibility, full solution might layer on top of 
something else



Example: Ceph

• Two-layer architecture
• Object layer (RADOS) is self-organizing

o can be used alone for block storage via RBD
• Metadata layer provides POSIX file semantics 

on top of RADOS objects
• Full-kernel implementation
• Great architecture, some day it will be a great 

implementation



Ceph Diagram

Data

Data

Data

Data

Metadata

Metadata

Client

RADOS
Layer

Ceph
Layer



Example: GlusterFS

• Single-layer architecture
o sharding instead of layering
o one type of server – data and metadata

• Servers are dumb, smart behavior driven by 
clients

• FUSE implementation
• Native, NFSv3, UFO, Hadoop



GlusterFS Diagram

Client

Data

Metadata

Brick A

Data

Metadata

Data

Metadata

Brick B

Data

Metadata

Data

Metadata

Brick C

Data

Metadata

Data

Metadata

Brick D

Data

Metadata



OK, What About HekaFS?

• Don't blame me for the name
o trademark issues are a distraction from real work

• Existing DFSes solve many problems already
o sharding, replication, striping

• What they don't address is cloud-specific 
deployment
o lack of trust (user/user and user/provider)
o location transparency
o operationalization



Why Start With GlusterFS?

• Not going to write my own from scratch
o been there, done that
o leverage existing code, community, user base

• Modular architecture allows adding functionality 
via an API
o separate licensing, distribution, support

• By far the best configuration/management
• OK, so it's FUSE

o not as bad as people think + add more servers



HekaFS Current Features

• Directory isolation
• ID isolation

o “virtualize” between server ID space and tenants'
• SSL

o encryption useful on its own
o authentication is needed by other features

• At-rest encryption
o Keys ONLY on clients
o AES-256 through AES-1024, “ESSIV-like”



HekaFS Future Features

• Enough of multi-tenancy, now for other stuff
• Improved (local/sync) replication

o lower latency, faster repair
• Namespace (and small-file?) caching
• Improved data integrity
• Improved distribution

o higher server counts, smoother reconfiguration
• Erasure codes?



HekaFS Global Replication

• Multi-site asynchronous
• Arbitrary number of sites
• Write from any site, even during partition

o ordered, eventually consistent with conflict resolution

• Caching is just a special case of replication
o interest expressed (and withdrawn) not assumed

• Some infrastructure being done early for local 
replication



Project Status

• All open source
o code hosted by Fedora, bugzilla by Red Hat
o Red Hat also pays me (and others) to work on it

• Close collaboration with Gluster
o they do most of the work
o they're open-source folks too
o completely support their business model

• “current” = Fedora 16
• “future” = Fedora 17+ and Red Hat product



Contact Info

• Project
• http://hekafs.org
• jdarcy@redhat.com

• Personal
• http://pl.atyp.us
• jeff@pl.atyp.us



Cloud Filesystem

Jeff Darcy
for BBLISA, October 2011



What is a Filesystem?

• “The thing every OS and language knows”
• Directories, files, file descriptors
• Directories within directories
• Operate on single record (POSIX: single byte) 

within a file
• Built-in permissions model (e.g. UID, GID, 

ugo·rwx)
• Defined concurrency behaviors (e.g. fsync)
• Extras: symlinks, ACLs, xattrs 



Are Filesystems Relevant?

• Supported by every language and OS natively
• Shared data with rich semantics
• Graceful and efficient handling of multi-GB 

objects
• Permission model missing in some alternatives
• Polyglot storage, e.g. DB to index data in FS



Network Filesystems

• Extend filesystem to multiple clients
• Awesome idea so long as total required 

capacity/performance doesn't exceed a single 
server
o ...otherwise you get server sprawl

• Plenty of commercial vendors, community 
experience

• Making NFS highly available brings extra 
headaches



Distributed Filesystems

• Aggregate capacity/performance across servers
• Built-in redundancy

o ...but watch out: not all deal with HA transparently
• Among the most notoriously difficult kinds of 

software to set up, tune and maintain
o Anyone want to see my Lustre scars?

• Performance profile can be surprising
• Result: seen as specialized solution (esp. HPC)



Example: NFS4.1/pNFS

• pNFS distributes data access across servers
• Referrals etc. offload some metadata
• Only a protocol, not an implementation

o OSS clients, proprietary servers
• Does not address metadata scaling at all
• Conclusion: partial solution, good for 

compatibility, full solution might layer on top of 
something else



Example: Ceph

• Two-layer architecture
• Object layer (RADOS) is self-organizing

o can be used alone for block storage via RBD
• Metadata layer provides POSIX file semantics 

on top of RADOS objects
• Full-kernel implementation
• Great architecture, some day it will be a great 

implementation



Ceph DiagramDataDataDataDataMetadataMetadataClientRADOSLayerCephLayer



Example: GlusterFS

• Single-layer architecture
o sharding instead of layering
o one type of server – data and metadata

• Servers are dumb, smart behavior driven by 
clients

• FUSE implementation
• Native, NFSv3, UFO, Hadoop



GlusterFS DiagramClientDataMetadataBrick ADataMetadataDataMetadataBrick BDataMetadataDataMetadataBrick CDataMetadataDataMetadataBrick DDataMetadata



OK, What About HekaFS?

• Don't blame me for the name
o trademark issues are a distraction from real work

• Existing DFSes solve many problems already
o sharding, replication, striping

• What they don't address is cloud-specific 
deployment
o lack of trust (user/user and user/provider)
o location transparency
o operationalization



Why Start With GlusterFS?

• Not going to write my own from scratch
o been there, done that
o leverage existing code, community, user base

• Modular architecture allows adding functionality 
via an API
o separate licensing, distribution, support

• By far the best configuration/management
• OK, so it's FUSE

o not as bad as people think + add more servers



HekaFS Current Features

• Directory isolation
• ID isolation

o “virtualize” between server ID space and tenants'
• SSL

o encryption useful on its own
o authentication is needed by other features

• At-rest encryption
o Keys ONLY on clients
o AES-256 through AES-1024, “ESSIV-like”



HekaFS Future Features

• Enough of multi-tenancy, now for other stuff
• Improved (local/sync) replication

o lower latency, faster repair
• Namespace (and small-file?) caching
• Improved data integrity
• Improved distribution

o higher server counts, smoother reconfiguration
• Erasure codes?



HekaFS Global Replication

• Multi-site asynchronous
• Arbitrary number of sites
• Write from any site, even during partition

o ordered, eventually consistent with conflict resolution

• Caching is just a special case of replication
o interest expressed (and withdrawn) not assumed

• Some infrastructure being done early for local 
replication



Project Status

• All open source
o code hosted by Fedora, bugzilla by Red Hat
o Red Hat also pays me (and others) to work on it

• Close collaboration with Gluster
o they do most of the work
o they're open-source folks too
o completely support their business model

• “current” = Fedora 16
• “future” = Fedora 17+ and Red Hat product



Contact Info

• Project
• http://hekafs.org
• jdarcy@redhat.com

• Personal
• http://pl.atyp.us
• jeff@pl.atyp.us


