
Nagios and SEC: A Happy (Re-) Union

Presented to: BBLISA
By: John Rouillard (rouilj at renesys.com)
January 10, 2007

© 2007 J. Rouillard 2

Overview

• Three parts to this presentation
• Nagios

• Object definitions
• Correlation – parents and others

• SEC – Simple Event Correlator
• Rule Types
• Time based correlation

• The integration of the two

© 2007 J. Rouillard 3

Nagios

• Active and passive monitoring of services
• Runs little programs called plugins to test

services: web, ri, email (sending and receiving),
vpn etc.

• Notifies contacts when things aren't working
properly

• Provides some limited ability to distinguish actual
cause from it's effects

• Provides a web interface to control/display status

© 2007 J. Rouillard 4

Objects

Service
• Description
• Host/hostgroup
• Command

define service{

 service_description AtDaemonCheck

 host_name server.example.com

 hostgroup_name runs_at_servers

 use generic-service

 check_command check_local_procs!:1!1:!-C atd

 }

Host
• Name
• Address
• Hostgroup membership

define host{

 host_name server.example.com

 alias server

 address 192.168.0.222

 parents switch1.example.com

 use generic-host

 hostgroups ping_only,linux_servers,dns_server

}

© 2007 J. Rouillard 5

A Service Template

define service{

 name generic-service

 register 0

 active_checks_enabled 1

 passive_checks_enabled 1

 parallelize_check 1

 check_freshness 0

 event_handler_enabled 1

 flap_detection_enabled 0

 process_perf_data 1

 is_volatile 0

 max_check_attempts 3

 normal_check_interval 3

 retry_check_interval 1

 check_period 24x7

 contact_groups renesys-admins

 notifications_enabled 1

 notification_interval 60

 notification_period 24x7

 notification_options w,u,c,r,f

 ...

 }

© 2007 J. Rouillard 6

More objects

Command
• Command name
• Command line

define command{

 command_name check_local_procs

 command_line $USER1$/check_procs -w $ARG1$
-c $ARG2$ $ARG3$

 }

• Can contain dynamic
host data:

define command{

 command_name check_ldaps

 command_line $USER1$/check_ldaps -p 636 -H
`$USER1$/get_custom_attributes $HOSTNAME$
LDAP-CN` $ARG1$

 }

define host{

 host_name server2.example.com

 alias server2

 address 192.168.0.19

 parents switch2

 use generic-host

custom_macro server2.example.com-LDAP-CN
auth.example.com

 hostgroups ...}

© 2007 J. Rouillard 7

And yet more objects (last object slide)

• Contacts - who/how
• Contactgroup – assigned to services
• Hostgroup – act on a whole bunch of hosts
• Servicegroup – display multiple services together
• Servicedependency/hostdependency– host/svc B

depends on host/svc C
• Escalations – wake up more people
• Timeperiods – when
• Serviceextinfo/Hostextinfo – displayed attributes

© 2007 J. Rouillard 8

Nagios Correlation

● A service not host
monitoring program

● Plugins probe a
device and assign
severity to gathered
data

● Implements basic
service correlation
based on severity or
severity changes

Correlations include
● Topology (parent/child)
● Thresholds (count

continuous errors only)
● Service (if other service

in error don't poll/notify)
● Cluster plugin (X of Y

services must be ok)
● Flap detection (cycling

up/down, problematic to
implement)

© 2007 J. Rouillard 9

Other nagios tricks

• Links to TWiki for a knowledge base for services,
hosts, additional commands

• Gui changes for searching services, hosts
• Live example (time permitting/interest)

© 2007 J. Rouillard 10

SEC

• Mainly a passive tool that can be used for
event/log analysis – responds to externally
generated events

• Work in time as well as in “space”. E.G. the client
connects to the server and must be responded to
in 2 seconds and disconnect in 4 seconds.

• Can code “proper operation fingerprint” and report
 failures to match the fingerprint.

© 2007 J. Rouillard 11

SEC rules

• Match an event (using a perl regular expression)
• Allow you to perform actions based on the event

and fields in the event
• Can be turned on/off by using 'contexts'.
• Can analyse the event to look for numeric values

that are too big/small etc.
• 9 rule types for your correlation needs.
• One rule can influence/reset another so rule

groupings are common.

© 2007 J. Rouillard 12

Sec rule types

• Single – match a line and do something
• Suppress – match a line and ignore it
• PairWithWindow – Match a trigger event, then

look for a second event in the next 't' seconds.
Perform one action if second event seen, perform
another event if event not seen after 't' seconds.

• Calendar – execute an event at a given time
using a cron like time specification.

© 2007 J. Rouillard 13

More SEC rules

• SingleWithThreshold – match a line and do
something if it occurs enough times in a time
window.

• SingleWith2Thresholds – like single with
threshold, but rearm only when a second (lower)
threshold is satisfied.

• Pair – match a trigger event then match a second
event and perform an action

• SingleWithSuppress – suppress an event for
some time 't'.

© 2007 J. Rouillard 14

The last SEC rule

• SingleWithScript – match rule, run an external
script and perform an action depending on script
exit status.

© 2007 J. Rouillard 15

Contexts purpose

• Contexts in SEC fill two roles:
• They are a flag/semaphore indicating a condition

• Time periods
• Seen event (event A, B and C all occurred in a 5 minute

window)
• Relationships between things (c.f. a fact in things like

clips/jess)
• They are a bucket in which to hold data

• Can add text to a context
• Can pipe a context into a program (report)
• Can assign a context's contents to a variable
• Can assign a context multiple names

© 2007 J. Rouillard 16

Context example to implement the
PairWithWindow rule

• If the pair rule didn't exist
you could:

• Use a single rule to match
the first pattern and create
the “pattern1_matched”
context.

• Use a single rule to match
the second pattern only if
the “pattern1_matched”
context existed.

• E.G. (partial) Find “second
pattern” within 5 minutes (300 sec)
of “first pattern”.

type=single
pattern = first pattern
action = create pattern1_matched

300 (shellcmd echo failed)

type=single
pattern = second pattern
context = pattern1_matched
action = shellcmd echo foundit;

delete pattern1_matched

© 2007 J. Rouillard 17

The Importance of Time

• My company has some very complex processing
streams. Data is cooked by multiple processes
which must all meet certain time constraints to
provide data to our customers.

• Being able to see the current BGP data in 2 hours
doesn't help people troubleshooting a problem
now.

• Nagios is good at “what is happening now”. Sec is
good at “what has been happening and how does
it affect now”.

© 2007 J. Rouillard 18

Normal Suppression

• Nagios supplies a simple “now” based
dependency mechanism. E.G.
• Web server goes down – Nagios reports a problem
• Because the web server is down, RT, TWiki, Password

changing apps are down.
• Operations needs to receive the page for the web

server down and not all the collateral damage to TWiki,
RT etc.

• Isolation of root cause is primary requirement and
Nagios can do this since web server and TWiki are
down at the same time.

© 2007 J. Rouillard 19

Time Delayed Suppression (not)

• However Nagios doesn't work well for an app
where there is a processing pipeline.
• Too much routing data comes in – nagios detects it.
• A few minutes pass and the routing data is back to

normal limits, but....
• Now the next processing step falls behind because of

the excess routing data (expected in this case).
• Nagios detects this, but has forgotten that there was a

glut of routing data.
• Hence it wakes up the contacts because it knows

“now” and not how “now” came to be.

© 2007 J. Rouillard 20

SEC compared to Nagios

● Provide many types of
correlations. Usually
used in security
event/log analysis
monitoring.

● Can provide all of
Nagios correlations
except topology.

● When used with
Nagios it adds:

• Counting ok states
before rearming

● Different threshold
triggers or polling
interval on analysis of
error not just non-ok
severity.

● Changing trouble
thresholds per time
period/activity

© 2007 J. Rouillard 21

Activity Based Thresholds

● Nagios does support time periods, but in order to
have different critical/warning levels at different
times requires differently named service
definitions.

● Integration with SEC allows different threshold
levels based on time periods without having to
create new service definitions.

© 2007 J. Rouillard 22

Activity based threshold example

• The sec rule:
type=single
desc = host can have 2 cron processes between 6PM and 2 am for backups
ptype=regexp
pattern = ^... (\[[0-9]+\]

PROCESS_SERVICE_CHECK_RESULT\;host\;CronDaemonCheck);1;(PRO
CS WARNING: ([0-9]+) processes with command name .crond.*)

context = backups_running && =($3 == 2)
action = write %nagiosCmd ($1;0;[backups running] $2)

• A calendar rule defines the context
backups_running

© 2007 J. Rouillard 23

More SEC use cases

● Automatically disable notifications
● Implement acknowledgments that expire after

some period of time.
● Max check attempts can change depending on

the error.
● Automatic load redistribution to even load on

polled clients
● Automatically schedule downtime

© 2007 J. Rouillard 24

Event Mapping

● SEC acts as an event mapping layer
● Plugin talks to device and gathers data
● SEC further analyzes data, determines proper

severity, performs additional correlation,
modifies plugin output

● SEC notifies Nagios via passive check for
notification, display

© 2007 J. Rouillard 25

How to solve the problem?

• We have a mechanism (Nagios) that is not time
aware that is good at actively monitoring and
reporting on services.

• We have a mechanism (SEC) that is time aware
and can determine how we came to a problem.

• If we can get Nagios to send it's monitoring info to
SEC then can we get the best of both worlds?

© 2007 J. Rouillard 26

Yes

• I have created a patch to Nagios that allows the
active events to be passed through to a SEC
process.

• The processed results are then sent back to Nagios
for notification and display.

© 2007 J. Rouillard 27

Implementation

● Uses Nagios 2.X event broker
● Adds a callback to the core that allows event

broker module to override the plugin assigned
severity, replacing with current severity for that
service.

● Module can write a Nagios
PROCESS_SERVICE_CHECK_RESULT to a file for the
external correlator (e.g. SEC) to analyze.

● Two new service object parameters
ec_active_action and ec_passive_action control
operating mode for each severity.

© 2007 J. Rouillard 28

Operating Modes

● The module operates in one of three modes:
1. Pass polled event to Nagios (no external

correlation, current operation)
2. Pass unmodified polled event to Nagios and a

copy to SEC
3. Pass modified polled event to Nagios changing

severity to current severity and pass a copy to
SEC

© 2007 J. Rouillard 29

Current Testing

● Running with 1460 services. SEC uses 0.4% of
cpu for processing 9 events/second. 11% of the
events are sent back into Nagios. RTT (Nagios
-> SEC -> Nagios) 2-10 seconds.

● SEC configuration has 8 rules that split apart
every event line. Has 2 event mapping rules to
provide more useful output messages and 1
rescheduling rule to distribute polls in time

● SEC also monitors Nagios log file for errors in
addition to handling active event stream.

© 2007 J. Rouillard 30

The Future

✔ Need Beta Testers - Beta release in early
January 2007

✗ Stop losing events when writing to a FIFO.
✔ Command line parser to allow user to set items

such as output mode at module load.
✔ Finalize annotation format for events
● Have module receive other data from Nagios

(e.g. acknowledgments, host events)
● More stress testing
● Add a 4th operational mode to stop Nagios

processing of active check result.

© 2007 J. Rouillard 31

Current Status

• This was announced at the LISA 2006 conference
in December.

• External beta test (3 sites) was supposed to occur
last Friday (1/5/2007), but was delayed.

• It is currently running on a secondary nagios
install monitoring the same services as the
primary Nagios instance.

• Changes will be released under the GPL the
same as Nagios.

32

http://www.renesys.com

• Presented by:
 John Rouillard (Renesys Corp)

● rouilj at renesys.com
● rouilj+ns at cs.umb.edu

1

1

Nagios and SEC: A Happy (Re-) Union

Presented to: BBLISA
By: John Rouillard (rouilj at renesys.com)
January 10, 2007

For more info about me visit my home page at:
 http://www.cs.umb.edu/~rouilj

-- rouilj

2

© 2007 J. Rouillard 2

Overview

• Three parts to this presentation
• Nagios

• Object definitions
• Correlation – parents and others

• SEC – Simple Event Correlator
• Rule Types
• Time based correlation

• The integration of the two

We will discuss the two components usied in monitoring. By the time I am finished
this evening you should be able to read nagios config files and understand what is
happening.
I will also discuss the use of SEC in event monitoring and how the two can be put
together to increase the intellenegence in the monitoing application.

3

© 2007 J. Rouillard 3

Nagios

• Active and passive monitoring of services
• Runs little programs called plugins to test

services: web, ri, email (sending and receiving),
vpn etc.

• Notifies contacts when things aren't working
properly

• Provides some limited ability to distinguish actual
cause from it's effects

• Provides a web interface to control/display status

4

© 2007 J. Rouillard 4

Objects

Service
• Description
• Host/hostgroup
• Command

define service{

 service_description AtDaemonCheck

 host_name server.example.com

 hostgroup_name runs_at_servers

 use generic-service

 check_command check_local_procs!:1!1:!-C atd

 }

Host
• Name
• Address
• Hostgroup membership

define host{

 host_name server.example.com

 alias server

 address 192.168.0.222

 parents switch1.example.com

 use generic-host

 hostgroups ping_only,linux_servers,dns_server

}

The basic monitoring unit in nagios is the service. It has a bunch of parameters, but
most are defined using a template like generic service discussed in the next slide,
and overridden by later definitions (until nagios 3 you can't undefine a parameter,
only change it). Use of a template makes definitions short. Usually services are
defined in terms of hostgroups, and not in terms of a host.

The service object check command consists of a command name (defined in a
command object) and an ! seperate list of positional arguments to the command.
The :1 argument means that any number of atd processes (specified by “-C atd”)
greater than 1 is a warning condition. 1: means that anything less than 1 atd is a
critical condition. The only way to determine what the positional parameters mean is
to look at the command object.

Similar use of a template makes the host definition simple. Hosts have a default
check command that is used to determine of the host is up. It is not run except when
a service on the host returns a non-ok state. This test is used to detect network/host
outages.

5

© 2007 J. Rouillard 5

A Service Template

define service{

 name generic-service

 register 0

 active_checks_enabled 1

 passive_checks_enabled 1

 parallelize_check 1

 check_freshness 0

 event_handler_enabled 1

 flap_detection_enabled 0

 process_perf_data 1

 is_volatile 0

 max_check_attempts 3

 normal_check_interval 3

 retry_check_interval 1

 check_period 24x7

 contact_groups renesys-admins

 notifications_enabled 1

 notification_interval 60

 notification_period 24x7

 notification_options w,u,c,r,f

 ...

 }

This is a template so it does not register the object, and provides a name that can be
used to reference it in a “use” parameter. Templates can be made for any object. Not
just services.
Active checks - schedule a check. Passive checks allows checks to be submitted to
nagios rather then generated by nagios (as in active check).
Freshness checking looks for old status data used with passive checks mainly to
detect if a passive check isn't running.
Event handlers can react to failing service checks. Restarting servers, swaping to a
redundant config etc.
Max_check_attempts – don't notify until that many consecutive checks are in a non-
ok state. Normal_check_interval – check the service every N intervals (usually an
interval is 60 seconds). Retry_check_interval – if we have fewer than
max_check_attempts non-ok checks, use this as the polling interval. Check period –
during what time do I run active checks.
Contact_groups - who do I notify. Notification_interval – how often do I notify
them. Notification_period – during what times can I notify them.
Notification_options – what states are notification generated for. (warning,
unknown, critical, recover, flapping).

6

© 2007 J. Rouillard 6

More objects

Command
• Command name
• Command line

define command{

 command_name check_local_procs

 command_line $USER1$/check_procs -w $ARG1$
-c $ARG2$ $ARG3$

 }

• Can contain dynamic
host data:

define command{

 command_name check_ldaps

 command_line $USER1$/check_ldaps -p 636 -H
`$USER1$/get_custom_attributes $HOSTNAME$
LDAP-CN` $ARG1$

 }

define host{

 host_name server2.example.com

 alias server2

 address 192.168.0.19

 parents switch2

 use generic-host

custom_macro server2.example.com-LDAP-CN
auth.example.com

 hostgroups ...}

In nagios 3, the host object can be extended with per host variables. The right hand
column shows how to do it in nagios versions 1 and 2. A single host may be known
under different names, external/internal interfaces, the SSL web interface may have a
generic www.example.com name etc.

Using dynamic host data allows a single command object to be used for any host in a
single service object. Otherwise multiple service objects (each passing a unique host
name) must be used which makes it a mess.

7

© 2007 J. Rouillard 7

And yet more objects (last object slide)

• Contacts - who/how
• Contactgroup – assigned to services
• Hostgroup – act on a whole bunch of hosts
• Servicegroup – display multiple services together
• Servicedependency/hostdependency– host/svc B

depends on host/svc C
• Escalations – wake up more people
• Timeperiods – when
• Serviceextinfo/Hostextinfo – displayed attributes

This rounds out the compendium of object in nagios. *extinfo is going away in
Nagios 3 as the parameters for these objects are added to the host and servic objects.

8

© 2007 J. Rouillard 8

Nagios Correlation

● A service not host
monitoring program

● Plugins probe a
device and assign
severity to gathered
data

● Implements basic
service correlation
based on severity or
severity changes

Correlations include
● Topology (parent/child)
● Thresholds (count

continuous errors only)
● Service (if other service

in error don't poll/notify)
● Cluster plugin (X of Y

services must be ok)
● Flap detection (cycling

up/down, problematic to
implement)

Correlation and downtime scheduling features is one of the strongest reasons to use
nagios in a production environment. Reduction of spurious pages/notifcation
allowing the root cause to isolated quickly saves much time and frustration.

Nagios topology correlation uses the host check and parent information to determing
the host that is closest to the nagios server that is still operating. It then marks hosts
further away as unreachable and supporesses sending notifications about problems
on those hosts. So having a switch go down means you don't get paged/emailed for
the 90 hosts attached to that switch. Similarly for a router.

However this comes with a cost. In nagios 1.x and 2.x the host checks are done
serially. So all other monitoring stops while nagios determines the closest reachable
host. This can result in minutes of time spent in this operation. Nagios 3.x does this
in parallel so it should scale much better.

9

© 2007 J. Rouillard 9

Other nagios tricks

• Links to TWiki for a knowledge base for services,
hosts, additional commands

• Gui changes for searching services, hosts
• Live example (time permitting/interest)

10

© 2007 J. Rouillard 10

SEC

• Mainly a passive tool that can be used for
event/log analysis – responds to externally
generated events

• Work in time as well as in “space”. E.G. the client
connects to the server and must be responded to
in 2 seconds and disconnect in 4 seconds.

• Can code “proper operation fingerprint” and report
 failures to match the fingerprint.

11

© 2007 J. Rouillard 11

SEC rules

• Match an event (using a perl regular expression)
• Allow you to perform actions based on the event

and fields in the event
• Can be turned on/off by using 'contexts'.
• Can analyse the event to look for numeric values

that are too big/small etc.
• 9 rule types for your correlation needs.
• One rule can influence/reset another so rule

groupings are common.

12

© 2007 J. Rouillard 12

Sec rule types

• Single – match a line and do something
• Suppress – match a line and ignore it
• PairWithWindow – Match a trigger event, then

look for a second event in the next 't' seconds.
Perform one action if second event seen, perform
another event if event not seen after 't' seconds.

• Calendar – execute an event at a given time
using a cron like time specification.

13

© 2007 J. Rouillard 13

More SEC rules

• SingleWithThreshold – match a line and do
something if it occurs enough times in a time
window.

• SingleWith2Thresholds – like single with
threshold, but rearm only when a second (lower)
threshold is satisfied.

• Pair – match a trigger event then match a second
event and perform an action

• SingleWithSuppress – suppress an event for
some time 't'.

14

© 2007 J. Rouillard 14

The last SEC rule

• SingleWithScript – match rule, run an external
script and perform an action depending on script
exit status.

15

© 2007 J. Rouillard 15

Contexts purpose

• Contexts in SEC fill two roles:
• They are a flag/semaphore indicating a condition

• Time periods
• Seen event (event A, B and C all occurred in a 5 minute

window)
• Relationships between things (c.f. a fact in things like

clips/jess)
• They are a bucket in which to hold data

• Can add text to a context
• Can pipe a context into a program (report)
• Can assign a context's contents to a variable
• Can assign a context multiple names

See my paper from LISA 2004 on the usefullness of multile names for context to tie
together related information from multiple processes into a single context for human
analysis. My example followed the ssh login process and the pdf's are located at:
http://www.cs.umb.edu/~rouilj/sec

16

© 2007 J. Rouillard 16

Context example to implement the
PairWithWindow rule

• If the pair rule didn't exist
you could:

• Use a single rule to match
the first pattern and create
the “pattern1_matched”
context.

• Use a single rule to match
the second pattern only if
the “pattern1_matched”
context existed.

• E.G. (partial) Find “second
pattern” within 5 minutes (300 sec)
of “first pattern”.

type=single
pattern = first pattern
action = create pattern1_matched

300 (shellcmd echo failed)

type=single
pattern = second pattern
context = pattern1_matched
action = shellcmd echo foundit;

delete pattern1_matched

The PairWithwindow rules looks for pattern 1, and wait for some period of time to
see if patern 2 occurs. If pattern 2 is seen, exeute one action. If after the time period
no pattern 2 is seen perform some different action.

With the two single rules, the first rule matches the “first pattern” and creates a
context that will live for 5 minutes. When the timer expires execute the “echo failed”
shell command. If the “second pattern” is seen, it executes the “echo foundit” shell
command and deletes the pattern1_matched context to that it won;t expire and fire
it's action. Deletion of a context doesn't trigger the timer expiration action.

If the “first pattern” was seen 6 minutes before the “second pattern” the second rule
would never fire because the context “pattern1_match” would be false (since the
context deleted itself after 5 minutes).

17

© 2007 J. Rouillard 17

The Importance of Time

• My company has some very complex processing
streams. Data is cooked by multiple processes
which must all meet certain time constraints to
provide data to our customers.

• Being able to see the current BGP data in 2 hours
doesn't help people troubleshooting a problem
now.

• Nagios is good at “what is happening now”. Sec is
good at “what has been happening and how does
it affect now”.

18

© 2007 J. Rouillard 18

Normal Suppression

• Nagios supplies a simple “now” based
dependency mechanism. E.G.
• Web server goes down – Nagios reports a problem
• Because the web server is down, RT, TWiki, Password

changing apps are down.
• Operations needs to receive the page for the web

server down and not all the collateral damage to TWiki,
RT etc.

• Isolation of root cause is primary requirement and
Nagios can do this since web server and TWiki are
down at the same time.

19

© 2007 J. Rouillard 19

Time Delayed Suppression (not)

• However Nagios doesn't work well for an app
where there is a processing pipeline.
• Too much routing data comes in – nagios detects it.
• A few minutes pass and the routing data is back to

normal limits, but....
• Now the next processing step falls behind because of

the excess routing data (expected in this case).
• Nagios detects this, but has forgotten that there was a

glut of routing data.
• Hence it wakes up the contacts because it knows

“now” and not how “now” came to be.

20

© 2007 J. Rouillard 20

SEC compared to Nagios

● Provide many types of
correlations. Usually
used in security
event/log analysis
monitoring.

● Can provide all of
Nagios correlations
except topology.

● When used with
Nagios it adds:

• Counting ok states
before rearming

● Different threshold
triggers or polling
interval on analysis of
error not just non-ok
severity.

● Changing trouble
thresholds per time
period/activity

21

© 2007 J. Rouillard 21

Activity Based Thresholds

● Nagios does support time periods, but in order to
have different critical/warning levels at different
times requires differently named service
definitions.

● Integration with SEC allows different threshold
levels based on time periods without having to
create new service definitions.

At LISA 2006 one poor admin had 9 different service definitions for varients of a
check in different time periods. Sadly his operators were getting confused as to
which was really active at a given time and mistakenly choosing the wrong varient
thinking there was a problem when there wasn't, or there wasn't a problem when
there was.

22

© 2007 J. Rouillard 22

Activity based threshold example

• The sec rule:
type=single
desc = host can have 2 cron processes between 6PM and 2 am for backups
ptype=regexp
pattern = ^... (\[[0-9]+\]

PROCESS_SERVICE_CHECK_RESULT\;host\;CronDaemonCheck);1;(PRO
CS WARNING: ([0-9]+) processes with command name .crond.*)

context = backups_running && =($3 == 2)
action = write %nagiosCmd ($1;0;[backups running] $2)

• A calendar rule defines the context
backups_running

The pattern matches a 4 character prefix, and then splits the nagios passive
command saving the stuff before the warning status (the value 1) field, and the sutff
after the field. If this pattern matches while the backups_running context exists and
$3 (which is the number of running processes) is “2” then it writes a modified
passive PROCESS_SERVICE_CHECK_RESULT with status 0 (ok) reporting the
data from the original result and saying that backups are running with 2 cron
processes. This overrides the warning that would have been generated originally.

%nagiosCmd is a variable with the filename of the nagios command fifo.

The actual input line (split to fit) looks like:

02a [1168401774]
PROCESS_SERVICE_CHECK_RESULT;host;CronDaemonCheck;1;PROCS
 WARNING: 2 processes with command name 'crond'

23

© 2007 J. Rouillard 23

More SEC use cases

● Automatically disable notifications
● Implement acknowledgments that expire after

some period of time.
● Max check attempts can change depending on

the error.
● Automatic load redistribution to even load on

polled clients
● Automatically schedule downtime

24

© 2007 J. Rouillard 24

Event Mapping

● SEC acts as an event mapping layer
● Plugin talks to device and gathers data
● SEC further analyzes data, determines proper

severity, performs additional correlation,
modifies plugin output

● SEC notifies Nagios via passive check for
notification, display

25

© 2007 J. Rouillard 25

How to solve the problem?

• We have a mechanism (Nagios) that is not time
aware that is good at actively monitoring and
reporting on services.

• We have a mechanism (SEC) that is time aware
and can determine how we came to a problem.

• If we can get Nagios to send it's monitoring info to
SEC then can we get the best of both worlds?

26

© 2007 J. Rouillard 26

Yes

• I have created a patch to Nagios that allows the
active events to be passed through to a SEC
process.

• The processed results are then sent back to Nagios
for notification and display.

27

© 2007 J. Rouillard 27

Implementation

● Uses Nagios 2.X event broker
● Adds a callback to the core that allows event

broker module to override the plugin assigned
severity, replacing with current severity for that
service.

● Module can write a Nagios
PROCESS_SERVICE_CHECK_RESULT to a file for the
external correlator (e.g. SEC) to analyze.

● Two new service object parameters
ec_active_action and ec_passive_action control
operating mode for each severity.

28

© 2007 J. Rouillard 28

Operating Modes

● The module operates in one of three modes:
1. Pass polled event to Nagios (no external

correlation, current operation)
2. Pass unmodified polled event to Nagios and a

copy to SEC
3. Pass modified polled event to Nagios changing

severity to current severity and pass a copy to
SEC

29

© 2007 J. Rouillard 29

Current Testing

● Running with 1460 services. SEC uses 0.4% of
cpu for processing 9 events/second. 11% of the
events are sent back into Nagios. RTT (Nagios
-> SEC -> Nagios) 2-10 seconds.

● SEC configuration has 8 rules that split apart
every event line. Has 2 event mapping rules to
provide more useful output messages and 1
rescheduling rule to distribute polls in time

● SEC also monitors Nagios log file for errors in
addition to handling active event stream.

30

© 2007 J. Rouillard 30

The Future

✔ Need Beta Testers - Beta release in early
January 2007

✗ Stop losing events when writing to a FIFO.
✔ Command line parser to allow user to set items

such as output mode at module load.
✔ Finalize annotation format for events
● Have module receive other data from Nagios

(e.g. acknowledgments, host events)
● More stress testing
● Add a 4th operational mode to stop Nagios

processing of active check result.

Items with check marks have been done. Items with X's are not going to be done.
Items with bullets are still in progress.

final annotation mode is 4 characters:
 current status of the service (0, 1, 2, 3)
 mode in which the service event was processed (1, 2, 3 (or 4 when implemented)
 whether the event was received actively or passively (a or p)
 a space to seperate the annotation from the nagios command
The annotation mode is set by an argument to the object file when it is loaded. This
allows varients to be used in the future for those who wish to have more info (e.g.
polling interval data).

The fourth operation mode has not been started yet, and it is basically a varient of the
third mode where:
 no service is returned to nagios. It is as though nagios never did the poll.
 The only result of the poll is an event passed to the external correlator.

The advantage of this is that mode three can be confusing. A poll occurs and
displays the original output from the plugin on the web gui. Then the correlator
changes that and displays some new text. So there is a small period where
unprocessed raw plugin output is shown. This flipping can be disconcerting.
Mode 4 does away with that as the result of the plugin is never seen unfiltered at the
gui.

31

© 2007 J. Rouillard 31

Current Status

• This was announced at the LISA 2006 conference
in December.

• External beta test (3 sites) was supposed to occur
last Friday (1/5/2007), but was delayed.

• It is currently running on a secondary nagios
install monitoring the same services as the
primary Nagios instance.

• Changes will be released under the GPL the
same as Nagios.

32

32

http://www.renesys.com

• Presented by:
 John Rouillard (Renesys Corp)

● rouilj at renesys.com
● rouilj+ns at cs.umb.edu

